Despite the fact that most industrial processes for secondary metabolite production are performed with submerged cultures, a reliable developmental model for Streptomyces under these culture conditions is lacking. With the exception of a few species which sporulate under these conditions, it is assumed that no morphological differentiation processes take place. In this work, we describe new developmental features of Streptomyces coelicolor A3(2) grown in liquid cultures and integrate them into a developmental model analogous to the one previously described for surface cultures. Spores germinate as a compartmentalized mycelium (first mycelium). These young compartmentalized hyphae start to form pellets which grow in a radial pattern. Death processes take place in the center of the pellets, followed by growth arrest. A new multinucleated mycelium with sporadic septa (second mycelium) develops inside the pellets and along the periphery, giving rise to a second growth phase. Undecylprodigiosin and actinorhodin antibiotics are produced by this second mycelium but not by the first one. Cell density dictates how the culture will behave in terms of differentiation processes and antibiotic production. When diluted inocula are used, the growth arrest phase, emergence of a second mycelium, and antibiotic production are delayed. Moreover, pellets are less abundant and have larger diameters than in dense cultures. This work is the first to report on the relationship between differentiation processes and secondary metabolite production in submerged Streptomyces cultures.Streptomyces is a soil bacterium that produces numerous clinically useful antibiotics (1, 54, 66), as well as many molecules that affect eukaryotic systems, such as inducers of eukaryotic cellular differentiation, inducers and inhibitors of apoptosis (59), and protein C kinase inhibitors with antitumor activity (such as staurosporine and others) (48, 57). Moreover, its remarkably complex developmental cycle makes this microorganism an interesting subject for study. The traditional developmental cycle of this bacterium describes two differentiated mycelial structures, a substrate (vegetative) mycelium and an aerial (reproductive) mycelium (10,25,33). In the substrate mycelium, septa are thought to be widely spaced and to define compartments containing several nucleoids (10, 63). After a short growth arrest phase characterized by reduced macromolecular synthesis (25), aerial hyphae develop from simple branching from substrate mycelium (29). Finally, the tips of the aerial mycelium differentiate into hydrophobic spore chains (8). Recently, we have been able to extend what is known about the developmental cycle in surface confluent cultures a great deal. Our main contribution has been to reveal the existence of a very young compartmentalized mycelium that dies following an orderly pattern, leaving alternating live and dead segments in the same hypha (37). Subsequently, the remaining live mycelium grows in successive waves that vary according to the density of the ...
A transformation system for selected mature cork oak (Quercus suber L.) trees using Agrobacterium tumefaciens has been established. Embryos obtained from recurrent proliferating embryogenic masses were inoculated with A. tumefaciens strains EHA105, LBA4404 or AGL1 harbouring the plasmid pBINUbiGUSint [carrying the neomycin phosphotransferase II (nptII) and beta-glucuronidase (uidA) genes]. The highest transformation efficiency (4%) was obtained when freshly isolated explants were inoculated with A. tumefaciens strain AGL1. Evidence of stable transgene integration was obtained by PCR for the nptII and uidA genes, Southern blotting and expression of the uidA gene. The transgenic embryos were germinated and successfully transferred to soil.
Background: Despite major recent advances in the understanding of peroxisomal functions and how peroxisomes arise, only scant information is available regarding this organelle in cellular aging. The aim of this study was to characterize the changes in the protein expression profile of aged versus young liver and kidney peroxisome-enriched fractions from mouse and to suggest possible mechanisms underlying peroxisomal aging. Peroxisome-enriched fractions from 10 weeks, 18 months and 24 months C57bl/6J mice were analyzed by quantitative proteomics.
An optimized protocol for Agrobacterium tumefaciens-mediated transformation of mature Quercus suber L. embryogenic masses is reported. In this work several variables were tested. Plant genotype, explant type and time elapsed between the last subculture and inoculation, i.e. the explant preculture period, were found to be very important. Interaction between inoculum density and cocultivation period influenced the transformation efficiency as well. A transformation efficiency (i.e. percentage of the inoculated explants that yielded independent transgenic embryogenic lines) of up to 43% was obtained, greatly improving the previously described method for plant transformation of adult-selected cork oak. It was also shown that this protocol could be applied to various genotypes.
The bar gene was introduced into the cork oak genome. Cork oak embryogenic masses were transformed using the Agrobacterium strain AGL1 which carried the plasmid pBINUbiBar. This vector harbours the genes, nptII and bar, the latter under control of the maize ubiquitin promoter. The transgenic embryogenic lines were cryopreserved. Varying activities of phosphinothricin acetyl transferase were detected among the lines, which carried 1-4 copies of the insert. Molecular and biochemical assays confirmed the stability and expression of the transgenes 3 months after thawing the cultures. These results demonstrate genetic engineering of herbicide tolerance in Quercus spp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.