Multivariate neuroimaging studies indicate that the brain represents word and object concepts in a format that readily generalises across stimuli. Here we investigated whether this was true for neural representations of events described using sentences. Participants viewed sentences describing four events in different ways. Multivariate classifiers were trained to discriminate the four events using a subset of sentences, allowing us to test generalisation to novel sentences. We found that neural patterns in a left-lateralised network of frontal, temporal and parietal regions discriminated events in a way that generalised successfully over changes in the syntactic and lexical properties of the sentences used to describe them. In contrast, decoding in visual areas was sentence-specific and failed to generalise to novel sentences. In the reverse analysis, we tested for decoding of syntactic and lexical form, independent of the event being described. Regions displaying this coding were limited and largely fell outside the canonical semantic network. Our results indicate that a distributed neural network represents the meaning of event sentences in a way that is robust to changes in their structure and form. They suggest that the semantic system disregards the surface properties of stimuli in order to represent their underlying conceptual significance.
Multivariate neuroimaging studies indicate that the brain represents word and object concepts in a format that readily generalises across stimuli. Here we investigated whether this was true for neural representations of simple events described using sentences. Participants viewed sentences describing four events in different ways. Multivariate classifiers were trained to discriminate the four events using a subset of sentences, allowing us to test generalisation to novel sentences. We found that neural patterns in a left-lateralised network of frontal, temporal and parietal regions discriminated events in a way that generalised successfully over changes in the syntactic and lexical properties of the sentences used to describe them. In contrast, decoding in visual areas was sentence-specific and failed to generalise to novel sentences. In the reverse analysis, we tested for decoding of syntactic and lexical structure, independent of the event being described. Regions displaying this coding were limited and largely fell outside the canonical semantic network. Our results indicate that a distributed neural network represents the meaning of event sentences in a way that is robust to changes in their structure and form. They suggest that the semantic system disregards the surface properties of stimuli in order to represent their underlying conceptual significance.
Symmetry perception studies have generally used two stimulus types: figural and dot patterns. Here, we designed a novel figural stimulus—a wedge pattern—made of centrally aligned pseudorandomly positioned wedges. To study the effect of pattern figurality and colour on symmetry perception, we compared symmetry detection in multicoloured wedge patterns with nonfigural dot patterns in younger and older adults. Symmetry signal was either segregated or nonsegregated by colour, and the symmetry detection task was performed under two conditions: with or without colour-based attention. In the first experiment, we compared performance for colour-symmetric patterns that varied in the number of wedges (24 vs. 36) and number of colours (2 vs. 3) and found that symmetry detection was facilitated by attention to colour when symmetry and noise signals were segregated by colour. In the second experiment, we compared performance for wedge and dot patterns on a sample of younger and older participants. Effects of attention to colour in segregated stimuli were magnified for wedge compared with dot patterns, with older and younger adults showing different effects of attention to colour on performance. Older adults significantly underperformed on uncued wedge patterns compared with dot patterns, but their performance improved greatly through colour cueing, reaching performance levels similar to young participants. Thus, while confirming the age-related decline in symmetry detection, we found that this deficit could be alleviated in figural multicoloured patterns by attending to the colour that carries the symmetry signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.