This paper performs an experimental comparative study between t h e W a v e l a y o u t s t y l e ( " S " s h a p e g a t e g e o m e t r y ) a n d t h e Conventional (rectangular gate geometry) counterpart in order to verify and quantify the benefits that Wave structure can bring to improve the performance of devices in analog circuit, specially in trasconductance the ratio of transconductance between drain current as a function of the ratio of the drain current normalized by the geometric factor and frequency response (voltage gain and unit voltage gain frequency). By working with Wave structure instead of conventional counterpart, it can improve the device performance in terms of drain current in the triode and saturation regions, consequently better results in the transconductance and unit voltage gain frequency gains.
This paper presents an experimental comparative study between the Metal-Oxide-Semiconductor Field Effect Transistors (MOSFET) manufactured with the Wave ("S" gate geometry) and the standard layout (CnM) considering the Total Ionizing Dose (TID) effects and taking into account that the devices were biased during the radiation procedure to emphasize the effects. Due to the special layout characteristics and the different effects of the bird’s beaks regions of the Wave MOSFET (WnM) compared to the conventional rectangular layout, this innovative layout proposal for MOSFETs is able to improve the device TID tolerance without adding cost to the Complementary MOS (CMOS) manufacturing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.