COVID-19 has overloaded health system worldwide; thus, it demanded a triage method for an efficient and early discrimination of patients with COVID-19. The objective of this research was to perform a model based on commonly requested hematological variables for an early featuring of patients with COVID-19 form other viral pneumonia. This investigation enrolled 951 patients (mean of age 68 and 56% of male) who underwent a PCR test for respiratory viruses between January 2019 and January 2020, and those who underwent a PCR test for detection of SARS-CoV-2 between February 2020 and October 2020. A comparative analysis of the population according to PCR tests and logistic regression model was performed. A total of 10 variables were found for the characterization of COVID-19: age, sex, anemia, immunosuppression, C-reactive protein, chronic obstructive pulmonary disease, cardiorespiratory disease, metastasis, leukocytes and monocytes. The ROC curve revealed a sensitivity and specificity of 75%. A deep analysis showed low levels of leukocytes in COVID-19-positive patients, which could be used as a primary outcome of COVID-19 detection. In conclusion, this investigation found that commonly requested laboratory variables are able to help physicians to distinguish COVID-19 and perform a quick stratification of patients into different prognostic categories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.