The leaf water potential, gas exchange and chlorophyll fluorescence were evaluated in five common bean (Phaseolus vulgaris) genotypes A222, A320, BAT477, Carioca and Ouro Negro subjected to moderate water deficit. At the maximum water deficit (10 d of water withholding), the leaf water potential of genotypes A320 and A222 was higher (-0.35 and -0.50 MPa) when compared to the other genotypes (-0.67 to -0.77 MPa). The stomatal conductance and net photosynthetic rate were significantly reduced in all genotypes due to the water deficit. The greater reduction in stomatal conductance of A320 under drought resulted in high intrinsic water use efficiency. Mild water deficit affected the photochemical apparatus in bean genotypes probably by down-regulation since plants did not show photoinhibition. The photochemical apparatus of A222 and A320 genotypes was more sensitive to drought stress, showing reduced apparent electron transport even after the recovery of plant water status. On the other hand, even after 10 d of water withholding, the maximum efficiency of photosystem 2 was not affected, what suggest efficiency of the photoprotection mechanisms.
The Pneumatic method has been introduced to quantify embolism resistance in plant xylem of various organs by applying a partial vacuum to cut-open xylem. Despite the similarity in vulnerability curves between the Pneumatic and other methods, a modeling approach is needed to investigate if changes in xylem embolism during dehydration can be accurately quantified based on gas diffusion kinetics. Therefore, a Unit Pipe Pneumatic (UPPn) model was developed to estimate gas extraction from intact conduits, which were axially interconnected by inter-conduit pit membranes to cut-open conduits. The physical laws used included Fick’s law for diffusion, Henry’s law for gas concentration partitioning between liquid and gas phases at equilibrium, and the ideal gas law. The UPPn model showed that 91% of the extracted gas came from the first five series of embolized, intact conduits, and only 9% from the aqueous phase after 15 s of simulation. Considering alternative gas sources, embolism resistance measured with a Pneumatron device was systematically overestimated by 2 to 17%, which corresponded to a typical measuring error of 0.11 MPa for P50 (the water potential equivalent to 50% of the maximum amount of gas extracted). It is concluded that pneumatic vulnerability curves directly measure embolism of intact conduits due to the fast movement of gas across interconduit pit membranes, while gas extraction from sap and diffusion across hydrated cell walls is about 100 times slower. We expect that the UPPn model will also contribute to the understanding of embolism propagation based on temporal gas dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.