There is increasing evidence that geographic and climatic clines drive the patterns of plant defence allocation and defensive strategies. We quantified early growth rate and both constitutive and inducible chemical defences of 18 Pinaceae species in a common greenhouse environment and assessed their defensive allocation with respect to each species' range across climatic gradients spanning 31° latitude and 2300 m elevation. Constitutive defences traded-off with induced defences, and these defensive strategies were associated with growth rate such that slow-growing species invested more in constitutive defence, whereas fast-growing species invested more in inducible defence. The position of each pine species along this trade-off axis was in turn associated with geography; moving poleward and to higher elevations, growth rate and inducible defences decreased, while constitutive defence increased. These geographic patterns in plant defence were most strongly associated with variation in temperature. Climatic and geographical clines thus act as drivers of defence profiles by mediating the constraints imposed by trade-offs, and this dynamic underlays global patterns of defence allocation.
Summary1. Production of antiherbivore chemical defences is generally assumed to be costly in terms of fitness, although some studies have failed to detect such costs. A convincing explanation is that the expression of fitness costs depends on environmental conditions such as nutrient availability. 2. We performed a greenhouse experiment with 33 half-sib families in order to study the phenotypic plasticity of constitutive and methyl jasmonate-induced chemical defences to soil phosphorus (P) availability, the existence of genetic trade-offs (costs) between growth and the production of those defences and the extent to which P availability may modulate the expression of those costs. 3. We measured some proxies of vegetative fitness (primary growth, secondary growth and total biomass), plant reserves (soluble sugars and starch) and the concentration of quantitative chemical defences (diterpene content in the stem, total polyphenolics and condensed tannins in the needles). 4. Phosphorus availability had a considerable effect, both on the allocation of resources to constitutive and induced defences and on the expression of vegetative costs associated with those chemical defences. Constitutive investment in chemical defences was greater under P-limited conditions for all studied traits. Inducibility of foliar phenolic compounds was greater under P-limited conditions, and it was strongly constrained under high P availability. Availability of P did not affect the inducibility of stem diterpenes. 5. All defensive traits showed significant genetic variation, with different levels of genetic control in constitutive and induced modes, and genetic variation in their inducibility. We found significant negative genetic correlations (i.e. trade-offs) between growth and defensive investment, but costs of chemical defences emerged only in P-limited conditions. Vegetative costs of constitutive defences were detected for stem diterpenes but not for needle phenolics, while costs of induced defences were found for leaf phenolics but not for stem diterpenes. 6. Synthesis. Our results indicate that P availability controls the production of chemical defences in this pine species, influencing the resource allocation to constitutive defences, the inducibility of those defences and the emergence of related vegetative costs. Phosphorus availability thus appears as a major driver in the evolution of pine resistance to insects and a potential factor in maintaining genetic variation in defences.
Methyl jasmonate (MeJa) is a plant chemical elicitor which has been used to artificially induce chemical defensive responses and resistance against herbivores in many plant species in recent decades. In this paper, we studied the effect of exogenous MeJa application at different concentrations (0, 5, 50, and 100 mM) on growth, chemical defences and resistance against the large pine weevil Hylobius abietis L in one year old Pinus pinaster Ait. seedlings. We also investigated whether the local application of MeJa on a basal branch would distally elicit defensive responses or growth reductions on the opposite branch and on the upper main stem. Exogenous application of MeJa induced resin accumulation in the stems, and enhanced resistance against H. abietis. The resin content in plants treated with 100 mM was nearly 2-fold greater, and the pine weevil consumed 80% less phloem than in control plants. However, concentration of total phenolics in needles was lower in plants treated with the higher MeJa dose, probably because of a local toxic effect. We did not detect any effect of MeJa application on plant growth traits. In addition, the application of MeJa on the experimental branches did not significantly affect the resin content, nor growth rates of the opposite untreated control branches. However, the application of MeJa on the experimental branches significantly increased the resin content in the stem and total phenolics in the needles in the apical stem section of the seedling. These results suggest that the systemic effect of the MeJa induction is restricted to the most valuable parts of the seedlings, and should be considered in further studies aimed to understand the systemic resistance of conifers.
While plant diversity is well known to increase primary productivity, whether these bottom-up effects are enhanced by reciprocal top-down effects from the third trophic level is unknown. We studied whether pine tree species diversity, aphid-tending ants and their interaction determined plant performance and arthropod community structure. Plant diversity had a positive effect on aphids, but only in the presence of mutualistic ants, leading to a threefold greater number of both groups in the tri-specific cultures than in monocultures. Plant diversity increased ant abundance not only by increasing aphid number, but also by increasing ant recruitment per aphid. The positive effect of diversity on ants in turn cascaded down to increase plant performance; diversity increased plant growth (but not biomass), and this effect was stronger in the presence of ants. Consequently, bottom-up effects of diversity within the same genus and guild of plants, and top-down effects from the third trophic level (predatory ants), interactively increased plant performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.