O-GlcNAcylation is an O-linked β-N-acetylglucosamine (O-GlcNAc) moiety linked to the serine or threonine residues in proteins. O-GlcNAcylation is a dynamic post-translational modification involved in a wide range of biological processes and diseases such as cancer. This modification can increase and decrease the activity of enzymes as well as interfere with protein stability and interaction. The modulatory capacity of O-GlcNAcylation, as well as protein phosphorylation, is of paramount importance in the regulation of metabolism and intracellular signaling of tumor cells. Thus, understanding the regulation of O-GlcNAcylation in tumor cells and their difference compared to non-tumor cells may elucidate new mechanisms related to tumor generation and development, could provide a new marker to diagnosis and prognosis in patients with cancer and indicate a new target to cancer chemotherapy.
Deregulated cellular metabolism is a hallmark of tumors. Cancer cells increase glucose and glutamine flux to provide energy needs and macromolecular synthesis demands. Several studies have been focused on the importance of glycolysis and pentose phosphate pathway. However, a neglected but very important branch of glucose metabolism is the hexosamine biosynthesis pathway (HBP). The HBP is a branch of the glucose metabolic pathway that consumes ϳ2-5% of the total glucose, generating UDP-GlcNAc as the end product. UDP-GlcNAc is the donor substrate used in multiple glycosylation reactions. Thus, HBP links the altered metabolism with aberrant glycosylation providing a mechanism for cancer cells to sense and respond to microenvironment changes. Here, we investigate the changes of glucose metabolism during epithelial mesenchymal transition (EMT) and the role of O-GlcNAcylation in this process. We show that A549 cells increase glucose uptake during EMT, but instead of increasing the glycolysis and pentose phosphate pathway, the glucose is shunted through the HBP. The activation of HBP induces an aberrant cell surface glycosylation and O-GlcNAcylation. The cell surface glycans display an increase of sialylation ␣2-6, poly-LacNAc, and fucosylation, all known epitopes found in different tumor models. In addition, modulation of O-GlcNAc levels was demonstrated to be important during the EMT process. Taken together, our results indicate that EMT is an applicable model to study metabolic and glycophenotype changes during carcinogenesis, suggesting that cell glycosylation senses metabolic changes and modulates cell plasticity.Altered metabolism represents the first known difference between cancer cells and normal cells (1). The Warburg effect consists of an increase of glucose uptake for producing energy by a high rate of glycolysis followed by lactic acid fermentation even under high oxygen tension ("aerobic glycolysis"). Understanding the metabolism of tumors remains a topic of intense study with important therapeutic potential (2, 3). Several advances in cancer metabolism research over past years have enhanced our understanding of how aerobic glycolysis and other metabolic shifts support the anabolic demands of high growth rate (4). Traditionally, the study of glucose metabolism usually focused on the use of glucose for energy needs. However, cancer cells use glucose in anabolic pathways that provide precursors for the synthesis of lipids, proteins, glycans, and DNA to satisfy the demands of growth and proliferation. Several studies have been focused on the importance of the pentose phosphate pathway (PPP), 3 to generate NADPH that ensures the antioxidant defenses of the cell and to generate the nucleotides in high demand or the use of intermediates of the glycolytic pathway to generate molecules such as lipids or amino acids (5). However, a neglected but integral branch of glucose metabolism is the hexosamine biosynthesis pathway (HBP).Approximately 2-5% of glucose influx is directed to the HBP by the rate-limiting enzyme ...
O-GlcNAcylation is a dynamic post-translational modification consisting of the addition of a single N-acetylglucosamine sugar to serine and threonine residues in proteins by the enzyme O-linked -N-acetylglucosamine transferase (OGT), whereas the enzyme O-GlcNAcase (OGA) removes the modification. In cancer, tumor samples present with altered O-GlcNAcylation; however, changes in O-GlcNAcylation are not consistent between tumor types. Interestingly, the tumor suppressor p53 is modified by O-GlcNAc, and most solid tumors contain mutations in p53 leading to the loss of p53 function. Because ovarian cancer has a high frequency of p53 mutation rates, we decided to investigate the relationship between O-GlcNAcylation and p53 function in ovarian cancer. We measured a significant decrease in O-GlcNAcylation of tumor tissue in an ovarian tumor microarray. Furthermore, O-GlcNAcylation was increased, and OGA protein and mRNA levels were decreased in ovarian tumor cell lines not expressing the protein p53. Treatment with the OGA inhibitor Thiamet-G (TMG), silencing of OGA, or overexpression of OGA and OGT led to p53 stabilization, increased nuclear localization, and increased protein and mRNA levels of p53 target genes. These data suggest that changes in O-GlcNAc homeostasis activate the p53 pathway. Combination treatment of the chemotherapeutic cisplatin with TMG decreased tumor cell growth and enhanced cell cycle arrest without impairing cytotoxicity. The effects of TMG on tumor cell growth were partially dependent on wild type p53 activation. In conclusion, changes in O-GlcNAc homeostasis activate the wild type p53 pathway in ovarian cancer cells, and OGA inhibition has the potential as an adjuvant treatment for ovarian carcinoma.
Most well studied as proteins that restrain the p53 tumor suppressor protein, MDM2 and MDMX have rich lives outside of their relationship to p53. There is much to learn about how these two proteins are regulated and how they can function in cells that lack p53. Regulation of MDM2 and MDMX, which takes place at the level of transcription, post-transcription, and protein modification, can be very intricate and is context-dependent. Equally complex are the myriad roles that these two proteins play in cells that lack wild-type p53; while many of these independent outcomes are consistent with oncogenic transformation, in some settings their functions could also be tumor suppressive. Since numerous small molecules that affect MDM2 and MDMX have been developed for therapeutic outcomes, most if not all designed to prevent their restraint of p53, it will be essential to understand how these diverse molecules might affect the p53-independent activities of MDM2 and MDMX.
A number of cancer types have shown an increased prevalence and a higher mortality rate in patients with hyperglycemic associated pathologies. Although the correlation between diabetes and cancer incidence has been increasingly reported, the underlying molecular mechanisms beyond this association are not yet fully understood. Recent studies have suggested that high glucose levels support tumor progression through multiple mechanisms that are hallmarks of cancer, including cell proliferation, resistance to apoptosis, increased cell migration and invasiveness, epigenetic regulation (hyperglycemic memory), resistance to chemotherapy and altered metabolism. Most of the above occur because hyperglycemia through hexosamine biosynthetic pathway leads to aberrant O-GlcNAcylation of many intracellular proteins that are involved in those mechanisms. Deregulated O-GlcNAcylation is emerging as a general feature of cancer. Despite strong evidence suggesting that aberrant O-GlcNAcylation is or may be involved in the acquisition of all cancer hallmarks, it remains out of the list of the next generation of emerging hallmarks. Here, we discuss some of the current understanding on how hyperglycemia affects cancer cell biology and how aberrant O-GlcNAcylation stands in this context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.