: On the maintenance task list of each water distribution system (WDS) operator, determination of the order of undertaken repairs seems quite a typical task. Characteristics of damages, their localization, and other factors that influence repair sequencing have a sound impact on the execution of such tasks. In the case of the most complex cases where numerous failures of different types occur at the very same time (i.e., due to earthquakes), there is a long list of selection criteria that have to be analyzed to deliver an objectively logical schedule for repair teams. In this article, authors attempt to find out if it is possible to define pipe rankings in having obtained the best factors for defined objective functions (criteria), making it feasible to deliver judicious repair sequencing. For the purposes of this paper, a survey has been carried out. Its conclusions made it possible to propose a method to create rankings of pipes and evaluate them using a selected multicriteria decision method: preference ranking organization method for enrichment evaluation (PROMETHEE). The work was carried out for five different disaster scenarios that had been supplied by ‘The Battle of Post-Disaster Response and Restoration’ organization committee. Obtained results might be further used to finetune this sequencing method of undertaken repairs, while conclusions could be useful to model similar events in WDS when required. This article is an extended paper based on the conference preprint presented at the 1st International Water Distribution Systems Analysis (WDSA)/International Computing & Control for the Water Industry (CCWI) Joint Conference in July 23–25, 2018 in Kingston, Ontario, Canada.
The paper presents the results of the Battle of Post-Disaster Response and Restoration (BPDRR), presented in a special session at the 1 st International WDSA/CCWI Joint Conference, held in Kingston, Ontario, in July 2018. The BPDRR problem focused on how to respond and restore water service after the occurrence of five earthquake scenarios that cause structural damage in a water distribution system. Participants were required to propose a prioritization schedule to fix the damages of each scenario while following restrictions on visibility/non visibility of damages. Each team/approach was evaluated against six performance criteria that included: 1) Time without supply for hospital/firefighting, 2) Rapidity of recovery, 3) Resilience loss, 4) Average time of no user service, 5) Number of users without service for 8 consecutive hours, and 6) Water loss. Three main types of approaches were identified from the submissions: 1) General purpose metaheuristic algorithms, 2) Greedy algorithms, and 3) Ranking-based prioritizations. All three approaches showed potential to solve the challenge efficiently. The results of the participants showed that, for this network, the impact of a largediameter pipe failure on the network is more significant than several smaller pipes failures. The location of isolation valves and the size of hydraulic segments influenced the resilience of the system during emergencies. On average, the interruptions to water supply (hospitals and firefighting) varied considerably between solutions and emergency scenarios, highlighting the importance of private water storage for emergencies. The effects of damages and repair work were more noticeable during the peak demand periods (morning and noontime) than during the low-flow periods; and tank storage helped to preserve functionality of the network in the first few hours after a simulated event.
Abstract.Paper presents a method of using EPANET solver to support manage water distribution system in Smart City. The main task is to develop the application that allows remote access to the simulation model of the water distribution network developed in the EPANET environment. Application allows to perform both single and cyclic simulations with the specified step of changing the values of the selected process variables. In the paper the architecture of application was shown. The application supports the selection of the best device control algorithm using optimization methods. Optimization procedures are possible with following methods: brute force, SLSQP (Sequential Least SQuares Programming), Modified Powell Method. Article was supplemented by example of using developed computer tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.