A novel method of synthesis of mesoporous, polymer-derived CMK-3 carbon replica was proposed. Instead of a multi-stage, time-consuming and toxic solvent involving procedure, the direct, acid-catalyzed precipitation polycondensation of furfuryl alcohol to poly(furfuryl alcohol) (PFA), as the carbon precursor, in the pore system of SBA-15 silica was used. The optimal PFA/SBA-15 mass ratio resulting in the complete pore filling was found. The final carbon material was obtained by carbonization of the formed composite and subsequent removal of silica by treatment with HF. Low-temperature sorption of nitrogen, powder X-ray diffraction and transmission electron microscopy confirmed the formation of well-ordered, hexagonal carbon mesostructure. The produced CMK-3 exhibited the presence of oxygencontaining surface groups, recognized as mainly carbonyl and carboxyl species by X-ray photoelectron spectroscopy and temperature-programmed desorption. The presence of these * Corresponding author. Tel: +48 12 6632006; Fax: +48 12 6340515. E-mail address: kustrows@chemia.uj.edu.pl (P. Kuśtrowski) 2 groups caused the mesoporous carbon to be catalytically active in the oxidative dehydrogenation of ethylbenzene to styrene.
Thermogravimetry, diffuse reflectance infrared Fourier transform spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used for the studying of thermally induced structural changes of polyacrylonitrile (PAN) deposited on the surface of SBA-15 type mesoporous silica. Polymer was introduced onto the support by the precipitation polymerization of acrylonitrile in aqueous suspension of SBA-15. Low temperature transformation (to 723 K) of the deposited PAN was analyzed. It was found that at about 523 K, exothermic cyclization of polymer chains to the so-called ladder form of PAN occurred. However, the total cyclization of PAN required higher carbonization temperatures, at which gradual dehydrogenation followed by graphitization was initiated. XPS revealed that the cyclic form of PAN and a relatively large amount of carbonyl species, formed during the carbonization of the PAN/SBA-15 composite at 623 K, were responsible for the high sorption capacity in the methylethyl ketone (MEK) vapor elimination. The efficiency in the MEK adsorption was also influenced by the content of PAN-derived carbon deposited on the SBA-15 surface.Keywords Thermal transformation of polyacrylonitrile Á SBA-15 support Á Thermogravimetry Á X-ray photoelectron spectroscopy Á Diffuse reflectance Fourier transform spectroscopy Á Adsorption of volatile organic compounds
Hydrothermal liquefaction of biomass in near-/supercritical water has attracted great attention in recent years. Although this technology seems to be promising for transformation of microalgal biomass, the information on the impact of feedstock and processing variables of continuous hydrothermal liquefaction on the properties of bio-oil provided in previous literature is scarce. Herein, the low-lipid Scenedesmus sp. biomass has been transformed to bio-oils through continuous hydrothermal liquefaction under various process conditions. The influence of temperature and residence time on bio-oil characteristic was discussed based on characterization by IR, GC-MS and gel permeation chromatography. The relative degree of branching of carbon chain of bio-oils components was estimated based on deconvolution of methyl and methylene IR absorption bands. The presumptive pathways of the reactions have been postulated. Finally, it was found that the parameters of bio-oil may be tailored by adjustment of processing variables, however, possible subsequent/parallel effects must be considered while designing the process.
One of the most efficient among the methods of managing waste tire rubber is the pyrolysis process which allows for obtaining pyrolysis oil. The as-received, raw tire pyrolysis oil (rTPO) is a complex mixture whose components exhibit a wide boiling temperature range, reflected in the physicochemical properties influencing injection, combustion, performance, and emission. The present contribution is aimed at producing TPO via steam-assisted pyrolysis followed by its fractionation by vacuum distillation. The resultant TPO fractions were analyzed in terms of composition as well as physicochemical parameters. The products are liquids with a relatively high density, poor volatility, and satisfactory low-temperature properties. They exhibit a mutually similar chemical composition reflected in a roughly the same Watson factor. The dominant components are cyclic and aromatic compounds, as was proven by gas chromatography coupled to mass spectrometry analysis and mid-infrared Fourier transform spectroscopy. Such a characteristic of the TPO fractions opens the way to utilize them either as additives to conventional automotive fuels or for heat and power generation. In particular, the two lightest fractions demonstrate high potential as fuel additives. Among the advantages of the fractionation of rTPO, one of the most important is the effect of the accumulation of sulfur-containing compounds in the highest boiling fractions, namely, vacuum fractionation allowed for reduction of the S content by 69.6 and 43.5 wt % (with regard to the rTPO) for the fractions boiling up to 180 and 180–250 °C, respectively. Thus, fractionation of pyrolysis oils could be used also as an ingenious and effective pretreatment method prior to exact desulfurization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.