Over the past 20 y, many studies have examined the history of the plant ecological and molecular model, Arabidopsis thaliana, in Europe and North America. Although these studies informed us about the recent history of the species, the early history has remained elusive. In a large-scale genomic analysis of African A. thaliana, we sequenced the genomes of 78 modern and herbarium samples from Africa and analyzed these together with over 1,000 previously sequenced Eurasian samples. In striking contrast to expectations, we find that all African individuals sampled are native to this continent, including those from sub-Saharan Africa. Moreover, we show that Africa harbors the greatest variation and represents the deepest history in the A. thaliana lineage. Our results also reveal evidence that selfing, a major defining characteristic of the species, evolved in a single geographic region, best represented today within Africa. Demographic inference supports a model in which the ancestral A. thaliana population began to split by 120-90 kya, during the last interglacial and Abbassia pluvial, and Eurasian populations subsequently separated from one another at around 40 kya. This bears striking similarities to the patterns observed for diverse species, including humans, implying a key role for climatic events during interglacial and pluvial periods in shaping the histories and current distributions of a wide range of species.he plant Arabidopsis thaliana is the principal plant model species, and as such has been useful not only to examine basic biological mechanisms but also to elucidate evolutionary processes. The exceptional resources available in this species, including seed stocks collected from throughout Eurasia for over 75 y, have been a valuable tool for learning about the natural history of A. thaliana on this continent (1, 2). Previous studies have shown that current variation in Eurasia is mainly a result of expansions and mixing from refugia in Iberia, Central Asia, and Italy/Balkans after the end of the last glacial period ∼10 kya (3-8). The main finding of the recent analysis of 1,135 sequenced genomes was that a few Eurasian samples represent divergent relict lineages, whereas the vast majority derived from the recent expansion of a single clade (4). Given the large number of studies that examine the natural history of A. thaliana, one would expect that this history would by now be described rather completely and there would be no major surprises left to uncover. However, there are still many open questions about the ancient history of the species.Several features differentiate A. thaliana from its closest relatives. Although most members of the Arabidopsis genus are obligate outcrossing perennials with large flowers and genome sizes of over 230 Mb and 8 chromosomes, A. thaliana is a predominantly selfing annual with reduced floral morphology and a reduced genome size of ∼150 Mb and 5 chromosomes. The transition to predominant selfing in A. thaliana was likely the catalyst for these derived morphological and...
By 4000 years ago, people had introduced maize to the southwestern United States; full agriculture was established quickly in the lowland deserts but delayed in the temperate highlands for 2000 years. We test if the earliest upland maize was adapted for early flowering, a characteristic of modern temperate maize. We sequenced fifteen 1900-year-old maize cobs from Turkey Pen Shelter in the temperate Southwest. Indirectly validated genomic models predicted that Turkey Pen maize was marginally adapted with respect to flowering, as well as short, tillering, and segregating for yellow kernel color. Temperate adaptation drove modern population differentiation and was selected in situ from ancient standing variation. Validated prediction of polygenic traits improves our understanding of ancient phenotypes and the dynamics of environmental adaptation.
Scandiceae subtribe Daucinae encompasses umbellifers that have fruits with prominent secondary ridges projecting into wings (former tribe Laserpitieae) or spines (former tribe Caucalideae pro parte). It comprises several economically or medicinally important genera including Cuminum, Daucus, Laser, Laserpitium and Thapsia among others. Recent molecular studies, based mostly on nrDNA ITS sequences, revealed that neither Daucus nor Laserpitium are monophyletic. To address issues of relationships and apply respective nomenclatural changes, we obtained additional ITS sequences as well as independent data from three plastid markers—rps16 intron, rpoC1 intron and rpoB‐trnC intergenic spacer—for a comprehensive sample of the subtribe. We examined data for 260 accessions representing all genera of Daucinae and 81 of its ca. 93 species. Phylogenetic trees were estimated using maximum likelihood and Bayesian inference methods. The results indicate that former Laserpitieae constitute a paraphyletic grade at the base of the spiny‐fruited members of Daucinae while traditionally delimited Daucus and Laserpitium are polyphyletic. To maintain a monophyletic Daucus, we suggest including the following genera and species into its synonymy: Agrocharis, Melanoselinum, Monizia, Pachyctenium, Pseudorlaya, Rouya, Tornabenea, Athamanta dellacellae and Cryptotaenia elegans. The species of Laserpitium occur in seven clades and only six species of the Laserpitium s.str. clade retain the generic name. Several species are transferred to Ekimia, Laser and Thapsia; additionally, a monospecific genus Siler is restored and a new genus, Silphiodaucus, is established. The inclusion of Ammodaucus into Thapsia suggested in an earlier study is not supported. The position of Laserpitium pseudomeum requires further study.
28Rice (Oryza sativa) is one of the world's most important food crops. We reconstruct 29
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.