The COVID-19 pandemic caused by SARS-CoV-2 is a global health emergency warranting the development of targeted treatment. The main protease M pro is considered as a key drug target in coronavirus infections because of its vital role in the proteolytic processing of two essential polyproteins required for the replication and transcription of viral RNA. Targeting and inhibiting the M pro activity represents a valid approach to prevent the SARS-CoV-2 replication and spread. Based on the structure-assisted drug designing, here we report a circadian clock-modulating small molecule “SRT2183” as a potent inhibitor of M pro to block the replication of SARS-CoV-2. The findings are expected to pave the way for the development of therapeutics for COVID-19.
The top priority of any nation is to lead the nation towards prosperity, progress, and economic growth, confronting several challenges and concerns arisen from global situations. The sudden outbreak of any disease defies the health care systems and economy of nations. COVID-19 is one of the viral diseases which broke out in Wuhan city of China in 2019. COVID-19 outbreak intermittently prevailed all over the world. It exposes the fragility of the established health care systems across the world in spite of comprising modern science and technology. Unfortunately, there is no chemotherapeutic agent in the regimen of antiviral drugs or no vaccine available to curb this infectious disease. As a consequence, this deadly infection has prevailed all over the world. The antiviral drugs used for viral diseases excluding COVID-19 infection are Ramdesvir, Favipiravir, and Ribavarin, and antimalarial agents (Chloroquine & Hydroxychloroquine) are being administered to the patients for redemption of this infection. Fortunately, these existing drugs have been found clinically active and are being used. In this review, we present the current scenario and status of epidemiology, diagnosis, treatment, vaccine development for COVID-19, and its impact on the socio-economic structure.
Scrub typhus also known as bush typhus is a disease with symptoms similar to Chikungunya infection. It is caused by a gram-negative bacterium Orientia tsutsugamushi which resides in its vertebrate host, Mites. The genome of Orientia tsutsugamushi str. Karp encodes for 1,563 proteins, of which 344 are characterized as hypothetical ones. In the present study, we tried to identify the probable functions of these 344 hypothetical proteins (HPs). All the characterized hypothetical proteins (HPs) belong to the various protein classes like enzymes, transporters, binding proteins, metabolic process and catalytic activity and kinase activity. These hypothetical proteins (HPs) were further analyzed for virulence factors with 62 proteins identified as the most virulent proteins among these hypothetical proteins (HPs). In addition, we studied the protein sequence similarity network for visualizing functional trends across protein superfamilies from the context of sequence similarity and it shows great potential for generating testable hypotheses about protein structure-function relationships. Furthermore, we calculated toplogical properties of the network and found them to obey network power law distributions showing a fractal nature. We also identifed two highly interconnected modules in the main network which contained five hub proteins (KJV55465, KJV56211, KJV57212, KJV57203 and KJV57216) having 1.0 clustering coefficient. The structural modeling (2D and 3D structure) of these five hub proteins was carried out and the catalytic site essential for its functioning was analyzed. The outcome of the present study may facilitate a better understanding of the mechanism of virulence, pathogenesis, adaptability to host and up-to-date annotations will make unknown genes easy to identify and target for experimentation. The information on the functional attributes and virulence characteristic of these hypothetical proteins (HPs) are envisaged to facilitate effective development of novel antibacterial drug targets of Orientia tsutsugamushi.
Cardiorenal syndromes constellate primary dysfunction of either heart or kidney whereby one organ dysfunction leads to the dysfunction of another. The role of several microRNAs (miRNAs) has been implicated in number of diseases, including hypertension, heart failure, and kidney diseases. Wide range of miRNAs has been identified as ideal candidate biomarkers due to their stable expression. Current study was aimed to identify crucial miRNAs and their target genes associated with cardiorenal syndrome and to explore their interaction analysis. Three differentially expressed microRNAs (DEMs), namely, hsa-miR-4476, hsa-miR-345-3p, and hsa-miR-371a-5p, were obtained from GSE89699 and GSE87885 microRNA data sets, using R/GEO2R tools. Furthermore, literature mining resulted in the retrieval of 15 miRNAs from scientific research and review articles. The miRNAs-gene networks were constructed using miRNet (a Web platform of miRNA-centric network visual analytics). CytoHubba (Cytoscape plugin) was adopted to identify the modules and the top-ranked nodes in the network based on Degree centrality, Closeness centrality, Betweenness centrality, and Stress centrality. The overlapped miRNAs were further used in pathway enrichment analysis. We found that hsa-miR-21-5p was common in 8 pathways out of the top 10. Based on the degree, 5 miRNAs, namely, hsa-mir-122-5p, hsa-mir-222-3p, hsa-mir-21-5p, hsa-mir-146a-5p, and hsa-mir-29b-3p, are considered as key influencing nodes in a network. We suggest that the identified miRNAs and their target genes may have pathological relevance in cardiorenal syndrome (CRS) and may emerge as potential diagnostic biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.