A standard procedure for pulsed-field gel electrophoresis (PFGE) of macrorestriction fragments of Acinetobacter baumannii was set up and validated for its interlaboratory reproducibility and its potential for use in the construction of an Internet-based database for international monitoring of epidemic strains. The PFGE fingerprints of strains were generated at three different laboratories with ApaI as the restriction enzyme and by a rigorously standardized procedure. The results were analyzed at the respective laboratories and also centrally at a national reference institute. In the first phase of the study, 20 A. baumannii strains, including 3 isolates each from three well-characterized hospital outbreaks and 11 sporadic strains, were distributed blindly to the participating laboratories. The local groupings of the isolates in each participating laboratory were identical and allowed the identification of the epidemiologically related isolates as belonging to three clusters and identified all unrelated strains as distinct. Central pattern analysis by using the band-based Dice coefficient and the unweighted pair group method with mathematical averaging as the clustering algorithm showed 95% matching of the outbreak strains processed at each local laboratory and 87% matching of the corresponding strains if they were processed at different laboratories. In the second phase of the study, 30 A. baumannii isolates representing 10 hospital outbreaks from different parts of Europe (3 isolates per outbreak) were blindly distributed to the three laboratories, so that each laboratory investigated 10 epidemiologically independent outbreak isolates. Central computer-assisted cluster analysis correctly identified the isolates according to their corresponding outbreak at an 87% clustering threshold. In conclusion, the standard procedure enabled us to generate PFGE fingerprints of epidemiologically related A. baumannii strains at different locations with sufficient interlaboratory reproducibility to set up an electronic database to monitor the geographic spread of epidemic strains.Acinetobacter baumannii is a well-recognized opportunistic pathogen that gives rise to nosocomial infections and outbreaks, in particular, in the intensive care unit setting (1). The increasing rates of resistance of A. baumannii to the major antimicrobial drugs make early identification and control of hospital outbreaks mandatory. Recent data indicate that several successful epidemic A. baumannii strains (clones) circulate in Europe, and a better understanding of the diversity within the species and the emergence of epidemic clones is urgently needed (19,25,29). Molecular typing plays an important role in the study of the epidemiology of A. baumannii and in coping with its epidemic spread.Various genotypic methods have been developed for the typing of acinetobacters, including ribotyping (11), macrorestriction analysis by pulsed-field gel electrophoresis (PFGE) (21), randomly amplified polymorphic DNA (RAPD) analysis (13), and total genomic fingerpr...
Metallo-β-lactamases (MBLs) are among the most challenging bacterial enzymes to overcome. Aztreonam (ATM) is the only β-lactam not hydrolyzed by MBLs but is often inactivated by co-produced extended-spectrum β-lactamases (ESBL). We assessed the activity of the combination of ATM with old and new β-lactamases inhibitors (BLIs) against MBL and ESBL co-producing Gram-negative clinical isolates. Six Enterobacterales and three non-fermenting bacilli co-producing MBL and ESBL determinants were selected as difficult-to-treat pathogens. ESBLs and MBLs genes were characterized by PCR and sequencing. The activity of ATM in combination with seven different BLIs (clavulanate, sulbactam, tazobactam, vaborbactam, avibactam, relebactam, zidebactam) was assessed by microdilution assay and time–kill curve. ATM plus avibactam was the most effective combination, able to restore ATM susceptibility in four out of nine tested isolates, reaching in some cases a 128-fold reduction of the MIC of ATM. In addition, relebactam and zidebactam showed to be effective, but with lesser reduction of the MIC of ATM. E. meningoseptica and C. indologenes were not inhibited by any ATM–BLI combination. ATM–BLI combinations demonstrated to be promising against MBL and ESBL co-producers, hence providing multiple options for treatment of related infections. However, no effective combination was found for some non-fermentative bacilli, suggesting the presence of additional resistance mechanisms that complicate the choice of an active therapy.
This study examines the interplay of multiple factors in determining a pattern of resistance or susceptibility to carbapenems in clinical isolates of
Pseudomonas aeruginosa
, focusing on the role of previously poorly understood determinants. In particular, the impact of carbapenem permeability through OprD and OpdP porins was analyzed, as well as the activity of the chromosomal carbapenemases AmpC and PoxB, going beyond the simple identification of resistance determinants encoded by each isolate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.