Preservation of blood plasma in the dried state would facilitate long-term storage and transport at ambient temperatures, without the need of to use liquid nitrogen tanks or freezers. The aim of this study was to investigate the feasibility of dry preservation of human plasma, using sugars as lyoprotectants, and evaluate macromolecular stability of plasma components during storage. Blood plasma from healthy donors was freeze dried using 0−10% glucose, sucrose, or trehalose, and stored at various temperatures. Differential scanning calorimetry was used to measure the glass transition temperatures of freeze-dried samples. Protein aggregation, the overall protein secondary structure, and oxidative damage were studied under different storage conditions. Differential scanning calorimetry measurements showed that plasma freeze-dried with glucose, sucrose and trehalose have glass transition temperatures of respectively 72±3.4˚C, 46±11˚C, 15±2.4˚C. It was found that sugars diminish freeze-drying induced protein aggregation in a dose-dependent manner, and that a 10% (w/v) sugar concentration almost entirely prevents protein aggregation. Protein aggregation after rehydration coincided with relatively high contents of β-sheet structures in the dried state. Trehalose reduced the rate of protein aggregation during storage at elevated temperatures, and plasma that is freeze-dried plasma with trehalose showed a reduced accumulation of reactive oxygen species and protein oxidation products during storage. In conclusion, freeze-drying plasma with trehalose provides an attractive alternative to traditional cryogenic preservation.
Even though dried sperm is not viable, it can be used for fertilization as long as its chromatin remains intact. In this study, we investigated drying- and temperature-induced conformational changes of nucleic acids and stallion sperm chromatin. Sperm was diluted in preservation formulations with and without sugar/albumin and subjected to convective drying at elevated temperatures on glass substrates. Accumulation of reactive oxygen species was studied during storage at different temperatures, and the sperm chromatin structure assay was used to assess DNA damage. Fourier transform infrared spectroscopy was used to identify dehydration and storage induced conformational changes in isolated DNA and sperm chromatin. Furthermore, hydrogen bonding in the preservation solutions associated with storage stability were investigated. Reactive oxygen species and DNA damage in dried sperm samples were found to accumulate with increasing storage temperature and storage duration. Non-reducing disaccharides (i.e., trehalose, sucrose) and albumin counteracted oxidative stress and preserved sperm chromatin during dried storage, whereas glucose increased DNA damage during storage. When sperm was dried in the presence of trehalose and albumin, no spectral changes were detected during storage at refrigeration temperatures, whereas under accelerated aging conditions, i.e., storage at 37 °C, spectral changes were detected indicating alterations in sperm chromatin structure.
Saliva has been widely recognized as a non-invasive, painless and easy-to-collect bodily fluid, which contains biomarkers that can be used for diagnosis of both oral and systemic diseases. Under ambient conditions, salivary biomarkers are subject to degradation. Therefore, in order to minimize degradation during transport and storage, saliva specimens need to be stabilized. The aim of this study was to investigate the feasibility of preserving saliva samples by drying to provide a shelf-stable source of DNA. Human saliva was dried on filters under ambient conditions using sucrose as lyoprotective agent. Samples were stored under different conditions, i.e. varying relative humidity (RH) and temperature. In addition to assessment of different cell types in saliva and their DNA contents, Fourier transform infrared spectroscopy (FTIR) was used to evaluate the effects of storage on biomolecular structure characteristics of saliva. FTIR analysis showed that saliva dried without a lyoprotectant exhibits a higher content of extended β-sheet protein secondary structures compared to samples that were dried with sucrose. In order to evaluate differences in characteristic bands arising from the DNA backbone among differently stored samples, principal component analysis (PCA) was performed, allowing a clear discrimination between groups with/without sucrose as well as storage durations and conditions. Our results indicated that saliva dried on filters in the presence of sucrose exhibits higher biomolecular stability during storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.