This paper presents a mechanical study on the use of tensegrity lattices for the design of energy efficient sun screens, inspired by the dynamic solar façades of the Al Bahar Towers in Abu Dhabi. The analyzed screens tassellate origami modules formed by 12-bar and 3-string tensegrity systems. The actuation of each module is controlled through the stretching of the perimeter strings, which form macro-triangles moving parallel to the building, while all the bars and the fabric mesh infills form micro-triangles that are allowed to move rigidly in space. We developed an analytic formulation of the deformation mapping associated with such an actuation motion, giving rise to a morphing-type behavior. We also estimated the energy required to activate the analyzed shading system, and established a comparison between its weight and that of the original screens of the Al Bahar Towers. The proposed tensegrity design concept leads to the realization of shading screens that are markedly lightweight, operate on very low energy consumption and can be usefully employed to harvest solar and wind energies.
We performed extensive Monte Carlo simulations of the ballistic deposition model in (1 + 1)-dimensions for several system sizes up to 1280 lattice constants, on the square lattice. Though the ballistic deposition model is generally accepted to belong to the Kardar-Parisi-Zhang (KPZ) universality class, strong corrections to scaling prevent numerical estimates of the exponents close to the asymptotic values. We obtained α ≥ 0.40, β ≥ 0.30, and z ≥ 1.16, which are consistent with the expected KPZ values of α = 1/2, β = 1/3, and z = 3/2. We found a slow, and even non-monotonic, convergence of the exponents towards the asymptotic values, which corroborates previous claims in the literature of strong corrections to scaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.