SummaryThere is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. We describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the parasite, with good pharmacokinetic properties, and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along mRNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.
The antiplasmodial activity, DMPK
properties, and efficacy of a series of quinoline-4-carboxamides are
described. This series was identified from a phenotypic screen against
the blood stage of Plasmodium falciparum (3D7) and
displayed moderate potency but with suboptimal physicochemical properties
and poor microsomal stability. The screening hit (1,
EC50 = 120 nM) was optimized to lead molecules with low
nanomolar in vitro potency. Improvement of the pharmacokinetic profile
led to several compounds showing excellent oral efficacy in the P. berghei malaria mouse model with ED90 values
below 1 mg/kg when dosed orally for 4 days. The favorable potency,
selectivity, DMPK properties, and efficacy coupled with a novel mechanism
of action, inhibition of translation elongation factor 2 (PfEF2), led to progression of 2 (DDD107498)
to preclinical development.
The protozoan parasite Trypanosoma brucei is the
causative agent of African sleeping sickness, and there is an urgent
unmet need for improved treatments. Parasite protein kinases are attractive
drug targets, provided that the host and parasite kinomes are sufficiently
divergent to allow specific inhibition to be achieved. Current drug
discovery efforts are hampered by the fact that comprehensive assay
panels for parasite targets have not yet been developed. Here, we
employ a kinase-focused chemoproteomics strategy that enables the
simultaneous profiling of kinase inhibitor potencies against more
than 50 endogenously expressed T. brucei kinases
in parasite cell extracts. The data reveal that T. brucei kinases are sensitive to typical kinase inhibitors with nanomolar
potency and demonstrate the potential for the development of species-specific
inhibitors.
Nuclear DBF-2-related (NDR) kinases are essential regulators of cell cycle progression, growth, and development in many organisms and are activated by the binding of an Mps One Binder (MOB) protein partner, autophosphorylation, and phosphorylation by an upstream STE20 family kinase. In the protozoan parasite, Trypanosoma brucei, the causative agent of human African trypanosomiasis, the NDR kinase, PK50, is expressed in proliferative life cycle stages and was shown to complement a yeast NDR kinase mutant cell line. However, the function of PK50 and a second NDR kinase, PK53, in T. brucei has not been determined to date, although trypanosome MOB1 is known to be essential for cytokinesis, suggesting the NDR kinases may also be involved in this process. Here, we show that specific depletion of PK50 or PK53 from bloodstream stage trypanosomes resulted in the rapid accumulation of cells with two nuclei and two kinetoplasts, indicating that cytokinesis was specifically inhibited. This led to a deregulation of the cell cycle and cell death and provides genetic validation of these kinases as potential novel drug targets for human African trypanosomiasis. Recombinant active PK50 and PK53 were produced and biochemically characterized. Both enzymes autophosphorylated, were able to trans-phosphorylate generic kinase substrates in vitro, and were active in the absence of phosphorylation by an upstream kinase. Additionally, both enzymes were active in the absence of MOB1 binding, which was also demonstrated to likely be a feature of the kinases in vivo. Biochemical characterization of recombinant PK50 and PK53 has revealed key kinetic differences between them, and the identification of in vitro peptide substrates in this study paves the way for high throughput inhibitor screening of these kinases.
Human African trypanosomiasis (HAT) is a life-threatening disease with approximately 30 000–40 000 new cases each year. Trypanosoma brucei protein kinase GSK3 short (TbGSK3) is required for parasite growth and survival. Herein we report a screen of a focused kinase library against T. brucei GSK3. From this we identified a series of several highly ligand-efficient TbGSK3 inhibitors. Following the hit validation process, we optimised a series of diaminothiazoles, identifying low-nanomolar inhibitors of TbGSK3 that are potent in vitro inhibitors of T. brucei proliferation. We show that the TbGSK3 pharmacophore overlaps with that of one or more additional molecular targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.