In this paper we study new algorithmic structures with Douglas-Rachford (DR) operators to solve convex feasibility problems. We propose to embed the basic two-set-DR algorithmic operator into the String-Averaging Projections (SAP) and into the Block-Iterative Projection (BIP) algorithmic structures, thereby creating new DR algorithmic schemes that include the recently proposed cyclic Douglas-Rachford algorithm and the averaged DR algorithm as special cases. We further propose and investigate a new multiple-set-DR algorithmic operator. Convergence of all these algorithmic schemes is studied by using properties of strongly quasi-nonexpansive operators and firmly nonexpansive operators.
Convex feasibility problems require to find a point in the intersection of a finite family of convex sets. We propose to solve such problems by performing set-enlargements and applying a new kind of projection operators called valiant projectors. A valiant projector onto a convex set implements a special relaxation strategy, proposed by Goffin in 1971, that dictates the move toward the projection according to the distance from the set. Contrary to past realizations of this strategy, our valiant projection operator implements the strategy in a continuous fashion. We study properties of valiant projectors and prove convergence of our new valiant projections method. These results include as a special case and extend the 1985 automatic relaxation method of Censor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.