Halloysite clay is an aluminosilicate nanotube formed by rolling flat sheets of kaolinite clay. They have a 15 nm lumen, 50-70 nm external diameter, length of 0.5-1 μm, and different inside/outside chemistry. Due to these nanoscale properties, they are used for loading, storage, and controlled release of active chemical agents, including anticorrosions, biocides, and drugs. We studied the immobilization in halloysite of laccase, glucose oxidase, and lipase. Overall, negatively charged proteins taken above their isoelectric points were mostly loaded into the positively charged tube's lumen. Typical tube loading with proteins was 6-7 wt % from which one-third was released in 5-10 h and the other two-thirds remained, providing enhanced biocatalysis in nanoconfined conditions. Immobilized lipase showed enhanced stability at acidic pH, and the optimum pH shifted to more alkaline pH. Immobilized laccase was more stable with respect to time, and immobilized glucose oxidase showed retention of enzymatic activity up to 70 °C, whereas the native sample was inactive.
Porous biopolymer hydrogels doped at 3-6 wt% with 50 nm diameter/0.8 μm long natural clay nanotubes were produced without any cross-linkers using the freeze-drying method. The enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite was demonstrated. SEM and AFM imaging has shown the even distribution of nanotubes within the scaffolds. We used enhanced dark-field microscopy to visualise the distribution of halloysite nanotubes in the implantation area. In vitro cell adhesion and proliferation on the nanocomposites occur without changes in viability and cytoskeleton formation. In vivo biocompatibility and biodegradability evaluation in rats has confirmed that the scaffolds promote the formation of novel blood vessels around the implantation sites. The scaffolds show excellent resorption within six weeks after implantation in rats. Neo-vascularization observed in newly formed connective tissue placed near the scaffold allows for the complete restoration of blood flow. These phenomena indicate that the halloysite-doped scaffolds are biocompatible as demonstrated both in vitro and in vivo. The chitosan-gelatine-agarose doped clay nanotube nanocomposite scaffolds fabricated in this work are promising candidates for tissue engineering applications.
Alumosilicate materials of different morphologies, such as platy and tubule nanoclays, may serve as an efficient, protective encasing for colored organic substances and nanoparticles. The adsorption of dyes onto the nanoclays increases their stability against thermal, oxidative, and acid-base-induced decomposition. Natural organic dyes form stable composites with clays, thus allowing for "green" technology in production of industrial nanopigments. In the presence of high-surface-area alumosilicate materials, semiconductor nanoparticles known as quantum dots are stabilized against agglomeration during their colloid synthesis, resulting in safe colors. The highly dispersed nanoclays such as tubule halloysite can be employed as biocompatible carriers of quantum dots for the dual labeling of living human cells-both for dark-field and fluorescence imaging. Therefore, complexation of dyes with nanoclays allows for new, stable, and inexpensive color formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.