Abstract-We investigate the application of the RRT * optimal motion planning algorithm to autonomous high-speed driving. Specifically, we discuss the implementation of RRT * for the halfcar dynamical model. To enable fast solutions of the associated local steering problem, we observe that the motion of a special point (viz., the front center of oscillation) can be modeled as a double integrator augmented with fictitious inputs. We first map the constraints on tire friction forces to constraints on these augmented inputs, which provides instantaneous, statedependent bounds on the curvature of geometric paths feasibly traversable by the front center of oscillation. Next, we map the vehicle's actual inputs to the augmented inputs. The local steering problem for the half-car dynamical model can then be transformed to a simpler steering problem for the front center of oscillation, which we solve efficiently by first constructing a curvature-bounded geometric path and then imposing a suitable speed profile on this geometric path. Finally, we demonstrate the efficacy of the proposed motion planner via numerical simulation results.
We present a path- and motion-planning scheme that is "multiresolution" both in the sense of representing the environment with high accuracy only locally and in the sense of addressing the vehicle kinematic and dynamic constraints only locally. The proposed scheme uses rectangular multiresolution cell decompositions, efficiently generated using the wavelet transform. The wavelet transform is widely used in signal and image processing, with emerging applications in autonomous sensing and perception systems. The proposed motion planner enables the simultaneous use of the wavelet transform in both the perception and in the motion-planning layers of vehicle autonomy, thus potentially reducing online computations. We rigorously prove the completeness of the proposed path-planning scheme, and we provide numerical simulation results to illustrate its efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.