BackgroundPathway-oriented experimental and computational studies have led to a significant accumulation of biological knowledge concerning three major types of biological pathway events: molecular signaling events, gene regulation events, and metabolic reaction events. A pathway consists of a series of molecular pathway events that link molecular entities such as proteins, genes, and metabolites. There are approximately 300 biological pathway resources as of April 2009 according to the Pathguide database; however, these pathway databases generally have poor coverage or poor quality, and are difficult to integrate, due to syntactic-level and semantic-level data incompatibilities.ResultsWe developed the Human Pathway Database (HPD) by integrating heterogeneous human pathway data that are either curated at the NCI Pathway Interaction Database (PID), Reactome, BioCarta, KEGG or indexed from the Protein Lounge Web sites. Integration of pathway data at syntactic, semantic, and schematic levels was based on a unified pathway data model and data warehousing-based integration techniques. HPD provides a comprehensive online view that connects human proteins, genes, RNA transcripts, enzymes, signaling events, metabolic reaction events, and gene regulatory events. At the time of this writing HPD includes 999 human pathways and more than 59,341 human molecular entities. The HPD software provides both a user-friendly Web interface for online use and a robust relational database backend for advanced pathway querying. This pathway tool enables users to 1) search for human pathways from different resources by simply entering genes/proteins involved in pathways or words appearing in pathway names, 2) analyze pathway-protein association, 3) study pathway-pathway similarity, and 4) build integrated pathway networks. We demonstrated the usage and characteristics of the new HPD through three breast cancer case studies.ConclusionHPD http://bio.informatics.iupui.edu/HPD is a new resource for searching, managing, and studying human biological pathways. Users of HPD can search against large collections of human biological pathways, compare related pathways and their molecular entity compositions, and build high-quality, expanded-scope disease pathway models. The current HPD software can help users address a wide range of pathway-related questions in human disease biology studies.
BackgroundHuman protein-protein interaction (PPI) data is essential to network and systems biology studies. PPI data can help biochemists hypothesize how proteins form complexes by binding to each other, how extracellular signals propagate through post-translational modification of de-activated signaling molecules, and how chemical reactions are coupled by enzymes involved in a complex biological process. Our capability to develop good public database resources for human PPI data has a direct impact on the quality of future research on genome biology and medicine.ResultsThe database of Human Annotated and Predicted Protein Interactions (HAPPI) version 2.0 is a major update to the original HAPPI 1.0 database. It contains 2,922,202 unique protein-protein interactions (PPI) linked by 23,060 human proteins, making it the most comprehensive database covering human PPI data today. These PPIs contain both physical/direct interactions and high-quality functional/indirect interactions. Compared with the HAPPI 1.0 database release, HAPPI database version 2.0 (HAPPI-2) represents a 485% of human PPI data coverage increase and a 73% protein coverage increase. The revamped HAPPI web portal provides users with a friendly search, curation, and data retrieval interface, allowing them to retrieve human PPIs and available annotation information on the interaction type, interaction quality, interacting partner drug targeting data, and disease information. The updated HAPPI-2 can be freely accessed by Academic users at http://discovery.informatics.uab.edu/HAPPI.ConclusionsWhile the underlying data for HAPPI-2 are integrated from a diverse data sources, the new HAPPI-2 release represents a good balance between data coverage and data quality of human PPIs, making it ideally suited for network biology.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3512-1) contains supplementary material, which is available to authorized users.
The observed historical rise in mortality for shunt operations relates to complex factors including changing practice for repair of ToF and for univentricular palliation. PA and SV patients are the groups of patients at the highest risk of death. Small size, shunt type and underlying anatomical defect are the main determinants of outcomes. Trends in indication and mortality seem to indicate that more severely ill patients benefit from shunting, but with an increase in mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.