Sentimental Analysis has grown as a significant opinion strategy in the field of online media due to quick information development and internet technologies. This research will play an important role for recommendation of best airline for Indian passengers to prefer the appropriate airline for their journey and also useful for the Indian ministry of aviation. In this study we have gathered different tiny texts called comments from different social media traveling websites using webharvy data fetcher scraping tool related to six top rated Indian airlines. The main problem with airline tweet SA (sentimental analysis) is determining the best sentiment classifier for appropriately classifying the tweets. VADER model has used sentiment ratings to connect lexical characteristics to emotion intensities. In this research, a Hybrid model integrated Adaboost approach (HMIAA) has proposed, which combines the basic learning classifier SVM with the forward-learning ensemble method Gradient Boosted Tree to form a single robust classifier or model, with the objective of improving SCT (sentimental classification technique) efficiency (performance) and accuracy. The findings reveal that the suggested hybrid approach integrating Adaboost technique outperforms other basic classifiers. After completion of sentimental analysis of all datasets we can recommend the passengers for the best airline.
Software development effort prediction using fixed mathematical formulae is inadequate due to impreciseness and nonlinearity exist in the software project data and leads to high prediction error rate, on the other hand Artificial Neural Network (ANN) techniques are very popular for prediction of software development effort due to its capability to map non linear input with output. This paper explores Error Back Propagation Network (EBPN) for software development effort prediction, by tuning some algorithm specific parameters like learning rate and momentum. EBPN is trained with two benchmark data sets: China and Maxwell. Results are analyzed in terms of various measures and found to be satisfactory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.