Abstract. Intrusion detection system (IDS) is one of the important research area in field of information and network security to protect information or data from unauthorized access. IDS is a classifier that can classify the data as normal or attack. In this paper, we have focused on many existing feature selection techniques to remove irrelevant features from NSL-KDD data set to develop a robust classifier that will be computationally efficient and effective. Four different feature selection techniques :Info Gain, Correlation, Relief and Symmetrical Uncertainty are combined with C4.5 decision tree technique to develop IDS . Experimental works are carried out using WEKA open source data mining tooland obtained results show that C4.5 with Info Gain feature selection technique has produced highest accuracy of 99.68% with 17 features, however result obtain in case of Symmetrical Uncertainty with C4.5 is also promising with 99.64% accuracy in case of only 11 features . Results are better as compare to the work already done in this area.
Identification of anomaly and malicious traffic in the Internet of things (IoT) network is essential for IoT security. Tracking and blocking unwanted traffic flows in the IoT network is required to design a framework for the identification of attacks more accurately, quickly, and with less complexity. Many machine learning (ML) algorithms proved their efficiency to detect intrusion in IoT networks. But this ML algorithm suffers many misclassification problems due to inappropriate and irrelevant feature size. In this paper, an in-depth study is presented to address such issues. We have presented lightweight low-cost feature selection IoT intrusion detection techniques with low complexity and high accuracy due to their low computational time. A novel feature selection technique was proposed with the integration of rank-based chi-square, Pearson correlation, and score correlation to extract relevant features out of all available features from the dataset. Then, feature entropy estimation was applied to validate the relationship among all extracted features to identify malicious traffic in IoT networks. Finally, an extreme gradient ensemble boosting approach was used to classify the features in relevant attack types. The simulation is performed on three datasets, i.e., NSL-KDD, USNW-NB15, and CCIDS2017, and results are presented on different test sets. It was observed that on the NSL-KDD dataset, accuracy was approx. 97.48%. Similarly, the accuracy of USNW-NB15 and CCIDS2017 was approx. 99.96% and 99.93%, respectively. Along with that, state-of-the-art comparison is also presented with existing techniques.
Traditional statistical as well as artificial intelligence techniques are widely used for stock market forecasting. Due to the nonlinearity in stock data, a model developed using the traditional or a single intelligent technique may not accurately forecast results. Therefore, there is a need to develop a hybridization of intelligent techniques for an effective predictive model. In this study, we propose an intelligent forecasting method based on a hybrid of an Artificial Neural Network (ANN) and a Genetic Algorithm (GA) and uses two US stock market indices, DOW30 and NASDAQ100, for forecasting. The data were partitioned into training, testing, and validation datasets. The model validation was done on the stock data of the COVID-19 period. The experimental findings obtained using the DOW30 and NASDAQ100 reveal that the accuracy of the GA and ANN hybrid model for the DOW30 and NASDAQ100 is greater than that of the single ANN (BPANN) technique, both in the short and long term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.