2018
DOI: 10.1016/j.procs.2018.05.103
|View full text |Cite
|
Sign up to set email alerts
|

An Ensemble Model for Detecting Phishing Attack with Proposed Remove-Replace Feature Selection Technique

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
12
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 35 publications
(14 citation statements)
references
References 14 publications
0
12
0
2
Order By: Relevance
“…Each earlier phishing detection approaches showed an acceptable detection accuracy while using specific feature patterns with selected detection algorithms in their specific application domain [7,8]. Currently, the usage of individual classification algorithm in phishing detection is developing to a combination of multiple classifiers in the form of ensemble methods to produce a better accuracy with more efficiency [9][10][11]. Unfortunately, most existing ensemble classification techniques in phishing detection could not afford to adapt automatically on the variation of input feature patterns, and it remains as a challenging issue in the phishing detection works [12].…”
Section: Introductionmentioning
confidence: 99%
“…Each earlier phishing detection approaches showed an acceptable detection accuracy while using specific feature patterns with selected detection algorithms in their specific application domain [7,8]. Currently, the usage of individual classification algorithm in phishing detection is developing to a combination of multiple classifiers in the form of ensemble methods to produce a better accuracy with more efficiency [9][10][11]. Unfortunately, most existing ensemble classification techniques in phishing detection could not afford to adapt automatically on the variation of input feature patterns, and it remains as a challenging issue in the phishing detection works [12].…”
Section: Introductionmentioning
confidence: 99%
“…The results show that they have the highest accuracies of 93.5% in comparison with other studies. The research [ 29 ] proposed a feature selection technique named as Remove Replace Feature Selection Technique (RRFST). They claim that they got the phishing email dataset from the khoonji’s anti-phishing website containing 47 features.…”
Section: Literature Surveymentioning
confidence: 99%
“…Esto ocasionó que las antiguas técnicas de detección de phishing no funcionen contra los ataques más recientes (Bulakh, 2016, p. 1). Como consecuencia de esta amenaza evolutiva, se ha decidido usar técnicas de machine learning que permitan encontrar nuevas páginas fraudulentas en un periodo de tiempo largo o indefinido (Hota, 2018;Medvet, 2008;Chen, 2010;Bulakh, 2016;Rajab, 2018).…”
Section: Estado Del Arteunclassified
“…Lamentablemente, los métodos propuestos no son capaces de detectar nuevas variantes de estos ataques, debido a que las métricas más importantes para detectar páginas phishing derivan de experiencias humanas (Mao, Bian, Tian, Zhhu, Wei, Li y Liang, 2018, p. 2). Por dicho motivo, en la actualidad se recurre a la inteligencia artificial para poder identificar páginas phishing de manera dinámica y automática utilizando para ello diferentes métricas (Abu-Nimeh, 2007;Al-Janabi, 2017;Bulakh, 2016;Chen, 2010;Hota, 2018;Jain, 2016;Mao, 2018;Medvet, 2008;Mourtaji, 2017;Rajab, 2018;Sanglerdsinlapachai, 2010).…”
Section: Introductionunclassified