Information security is extremely critical issues for every organization to protect information from unauthorized access. Intrusion detection system has one of the important roles to prevent data or information from malicious behaviours. Basically Intrusion detection system is a classifier that can classify the data as normal or attacks. In this research paper, we have proposed ANN-Bayesian Net-GR technique that means ensemble of Artificial Neural Network (ANN) and Bayesian Net with Gain Ratio (GR) feature selection technique. We have applied various individual classification techniques and its ensemble model on KDD99 and NSL-KDD data set to check the robustness of model. Due to irrelevant features in data set, also applied Gain Ratio feature selection technique on best model. Finally our proposed model produces highest accuracy compare to others.
Abstract. Intrusion detection system (IDS) is one of the important research area in field of information and network security to protect information or data from unauthorized access. IDS is a classifier that can classify the data as normal or attack. In this paper, we have focused on many existing feature selection techniques to remove irrelevant features from NSL-KDD data set to develop a robust classifier that will be computationally efficient and effective. Four different feature selection techniques :Info Gain, Correlation, Relief and Symmetrical Uncertainty are combined with C4.5 decision tree technique to develop IDS . Experimental works are carried out using WEKA open source data mining tooland obtained results show that C4.5 with Info Gain feature selection technique has produced highest accuracy of 99.68% with 17 features, however result obtain in case of Symmetrical Uncertainty with C4.5 is also promising with 99.64% accuracy in case of only 11 features . Results are better as compare to the work already done in this area.
The purpose of this article is to weigh up the foremost imperative features of Chronic Kidney Disease (CKD). This study is based mostly on three cluster techniques like; K means, Fuzzy c-means and hierarchical clustering. The authors used evolutionary techniques like genetic algorithms (GA) to extend the performance of the clustering model. The performance of these three clusters: live parameter purity, entropy, and Adjusted Rand Index (ARI) have been contemplated. The best purity is obtained by the K-means clustering technique, 96.50%; whereas, Fuzzy C-means clustering received 93.50% and hierarchical clustering was the lowest at 92. 25%. After using evolutionary technique Genetic Algorithm as Feature selection technique, the best purity is obtained by hierarchical clustering, 97.50%, compared to K –means clustering, 96.75%, and Fuzzy C-means clustering at 94.00%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.