We have previously shown that K-selection and microbial stability in the rearing water increases survival and growth of Atlantic cod (Gadus morhua) larvae, and that recirculating aquaculture systems (RAS) are compatible with this. Here, we have assessed how water treatment influenced the larval microbiota and host responses at the gene expression level. Cod larvae were reared with two different rearing water systems: a RAS and a flow-through system (FTS). The water microbiota was examined using a 16S rDNA PCR/DGGE strategy. RNA extracted from larvae at 8, 13, and 17 days post hatching was used for microbiota and microarray gene expression analysis. Bacterial cDNA was synthesized and used for 16S rRNA amplicon 454 pyrosequencing of larval microbiota. Both water and larval microbiota differed significantly between the systems, and the larval microbiota appeared to become more dissimilar between systems with time. In total 4 phyla were identified for all larvae: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The most profound difference in larval microbiota was a high abundance of Arcobacter (Epsilonproteobacteria) in FTS larvae (34 ± 9% of total reads). Arcobacter includes several species that are known pathogens for humans and animals. Cod larval transcriptome responses were investigated using an oligonucleotide gene expression microarray covering approximately 24,000 genes. Interestingly, FTS larvae transcriptional profiles revealed an overrepresentation of upregulated transcripts associated with responses to pathogens and infections, such as c1ql3-like, pglyrp-2-like and zg16, compared to RAS larvae. In conclusion, distinct water treatment systems induced differences in the larval microbiota. FTS larvae showed up-regulation of transcripts associated with responses to microbial stress. These results are consistent with the hypothesis that RAS promotes K-selection and microbial stability by maintaining a microbial load close to the carrying capacity of the system, and ensuring long retention times for both bacteria and water in the system.
Many studies demonstrate the importance of the commensal microbiomes to animal health and development. However, the initial community assembly process is poorly understood. It is unclear to what extent the hosts select for their commensal microbiota, whether stochastic processes contribute, and how environmental conditions affect the community assembly. We investigated community assembly in Atlantic cod larvae exposed to distinct microbial metacommunities. We aimed at quantifying ecological processes influencing community assembly in cod larvae and at elucidating the complex relationship between the bacteria of the environment and the fish. Selection within the fish was the major determinant for community assembly, but drift resulted in inter-individual variation. The environmental bacteria was highly dissimilar from the fish bacteria. Still, differences in the environmental bacteria strongly influenced the fish bacteria. The most striking difference was an excessive dominance of a single OTU (Arcobacter) for larvae reared in two of the three systems. These larvae were exposed to environments with higher fractions of opportunistic bacteria, and we hypothesise that detrimental host-microbe interactions might have made the fish susceptible for Arcobacter colonisation. Despite strong selection within the host, this points to a possibility to steer the metacommunity towards mutualistic host-microbe interactions and improved fish health and survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.