Colored Dissolved Organic Matter (CDOM) is an important optical constituent in seawater, which significantly attenuates the violet to blue portion of visible light. Thus, CDOM reduces the radiation energy available to phytoplankton and affects remote-sensing signals. We present data from two cruises transecting the Polar Front from Atlantic to Arctic waters in the Barents Sea, in 2007 and 2008. The latter took place during the spring bloom of phytoplankton in May (0.2 b [Chl a] b 13 mg m −3) and the former during August (max. [Chl a] b 2 mg m −3). Absorption by CDOM at 443 nm ranged from 0.004 to 0.080 m −1 during May and from 0.006 to 0.162 m −1 during August. Surprisingly, CDOM absorption differed little across the Polar Front, but was higher during August than during May (P b 0.05). The slope coefficient of the absorption spectra (S) ranged from 0.008 to 0.036 nm −1 (mean = 0.015 nm − 1) including both cruises, and varied little across the Front (P > 0.05). The CDOM remote sensing product from GlobColour correlated well with sampled data (R 2 = 0.73) during May. However, during August the satellite product performed poorly (R 2 = 0.02) due to extensive scattering caused by coccolithophorids in the Atlantic Water. The CDOM pool was of autochthonous (marine) origin as characterized from its S vs. absorption relationship. Modeling showed that CDOM, on average, contributed equally to the light absorption as did phytoplankton (at 1 mg Chl a m −3), and thereby reduces the amount of light available for primary production.
The pigmentation and corresponding in vivo and in vitro absorption characteristics in three different deep-water coral species: white and orange Lophelia pertusa, Paragorgia arborea and Primnoa resedaeformis, collected from the Trondheimsfjord are described. Pigments were isolated and characterized by High-Performance Liquid Chromatography (HPLC) analysis and High-Performance Liquid Chromatography Time-Of-Flight Mass Spectrometer (LC-TOF MS). The main carotenoids identified for all three coral species were astaxanthin and a canthaxanthin-like carotenoid. Soft tissue and skeleton of orange L. pertusa contained 2 times more astaxanthin g−1 wet weight compared to white L. pertusa. White and orange L. pertusa were characterized with in vivo absorbance peaks at 409 and 473 nm, respectively. In vivo absorbance maxima for P. arborea and P. resedaeformis was typically at 475 nm. The shapes of the absorbance spectra (400–700 nm) were species-specific, indicated by in vivo, in vitro and the corresponding difference spectra. The results may provide important chemotaxonomic information for pigment when bonded to their proteins in vivo, bio-prospecting, and for in situ identification, mapping and monitoring of corals.
Coral reefs around the world are under threat due to anthropogenic impacts on the environment. It is therefore important to develop methods to monitor the status of the reefs and detect changes in the health condition of the corals at an early stage before severe damage occur. In this work, we evaluate underwater hyperspectral imaging as a method to detect changes in health status of both orange and white color morphs of the coral species
Lophelia pertusa
. Differing health status was achieved by exposing 60 coral samples to the toxic compound 2-methylnaphthalene in concentrations of 0 mg L
−1
to 3.5 mg L
−1
. A machine learning model was utilized to classify corals according to lethal concentration (LC) levels LC5 (5% mortality) and LC25 (25% mortality), solely based on their reflectance spectra. All coral samples were classified to correct concentration group. This is a first step towards developing a remote sensing technique able to assess environmental impact on deep-water coral habitats over larger areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.