The longevity of removable prostheses is mostly influenced by the properties of the used materials. The ability of the material to withstand high occlusal loads without deformation can enhance patient satisfaction and quality of life. This in vitro study aimed to investigate the wear and fracture resistance of three-dimensional (3D)-printed teeth compared with commercially available acrylic resin teeth. Materials and methods: A total of 40 prefabricated acrylic teeth and 40 3D-printed teeth were prepared in two forms: anatomical for fracture resistance or flat for wear resistance (n = 10). For wear evaluation, specimens were scanned at baseline and then subjected to thermal cycling (10,000 cycles). This was followed by a chewing simulator (60,000 cycles) against either metal or natural tooth. Then, the specimens were scanned again. Wear analysis was performed by superimposing the standard tessellation language (STL) files from baseline and the final scans with the aid of GOM Inspect 2020 software. Fracture resistance was assessed with a universal testing machine at a crosshead speed of 0.5 mm/min before and after thermal cycling. Data were analyzed with two-independent t-test and two-way ANOVA (α = 0.05). Results: The 3D-printed teeth showed significantly lower wear resistance than the prefabricated ones with both antagonists (metal, p = 0.049; natural tooth, p = 0.021). The fracture resistance of the 3D-printed teeth was significantly higher than that of the prefabricated teeth before thermocycling (p = 0.042). After thermal cycling, the fracture resistance of both groups was decreased with no significant differences between them (p = 0.266). Conclusions: The 3D-printed teeth showed lower wear resistance and higher fracture resistance than the prefabricated ones. Thermal cycling negatively affected the fracture resistance of 3D-printed teeth.
Objectives With advanced technology for complete denture fabrication, there is a lack of knowledge on the mechanical behavior of three-dimensional (3D) printed teeth despite the development of complete denture fabrication technologies. This study aimed to compare different types of 3D-printed teeth in terms of wear and fracture resistance in comparison to control prefabricated denture teeth. Materials and Methods One prefabricated tooth was selected and fixed in a resin holder and half of the tooth remained in anatomic form, while the other half was flattened for the wear test. One from each type was scanned and then printed with different resins; Asiga (DentaTOOTH, Asiga, Alexandria 2015,NSW, Australia), FormLabs (Denture Base LP, FormLabs, Berlin, Germany), and NextDent (NextDent C&B MFH, NextDent B.V., Soesterberg, the Netherlands) according to manufacturer recommendations. A total of 60 specimens (20/resin, n = 10) were thermo cycled (5,000 cycles) and wear test samples were further subjected to cyclic loading (1,70,000 cycles) in a chewing simulator machine CS-4.2 (SD Mechatronik GmbH, Germany). The fracture strength of anatomic teeth was measured using a universal testing machine (Instron model 5965, Massachusetts, United States), while Geomagic Control X software was used to assess the amount of wear of flattened teeth. Statistical analyses were performed with one-way analysis of variance with Tukey's post hoc test at significance level of α = 0.05. Results NextDent specimens showed the greatest volume loss, whereas FormLabs specimens showed the least volume loss. Comparing NextDent specimens to FromLabs specimens, FromLabs showed statistically significantly less volume loss (p < 0.001). No other group pairs differed significantly from one another in terms of volume loss (p > 0.06). Conclusion 3D-printed denture teeth showed comparable strength and wear resistance with the prefabricated denture teeth and were suitable for long-term clinical usage except for NextDent that significantly showed the lowest fracture resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.