In the era of modern technology, the competitive paradigm among organisations is changing at an unprecedented rate. New success measures are applied to the organisation's supply chain performance to outperform the competition. However, this lead can only be obtained and sustained if the organisation has an effective and efficient supply chain and an appropriate forecasting technique. Thus, this study presents the demand-forecasting model, i.e., a good fit for the pharmaceutical sector, and shows promising results. Through this study, it is observed that combining forecasting algorithms can result in greater forecasting accuracies. Therefore, a combined forecasting technique ARIMA-HW hybrid 1 i.e. (ARHOW) combines the Autoregressive Integrated Moving Average and Holt' s-Winter model. The empirical findings confirm that ARHOW performs better than widely used forecasting techniques ARIMA, Holts Winter, ETS and Theta. The results of the study indicate that pharmaceutical companies can adopt this model for improved demand forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.