We describe synthetic membranes in which the molecular recognition chemistry used to accomplish selective permeation is DNA hybridization. These membranes contain template-synthesized gold nanotubes with inside diameters of 12 nanometers, and a "transporter" DNA-hairpin molecule is attached to the inside walls of these nanotubes. These DNA-functionalized nanotube membranes selectively recognize and transport the DNA strand that is complementary to the transporter strand, relative to DNA strands that are not complementary to the transporter. Under optimal conditions, single-base mismatch transport selectivity can be obtained.
Electrochemical DNA detection systems are an attractive approach to the development of multiplexed, high-throughput DNA analysis systems for clinical and research applications. We have engineered a new class of nanoelectrode ensembles (NEEs) that constitute a useful platform for biomolecular electrochemical sensing. High-sensitivity DNA detection was achieved at oligonucleotide-functionalized NEEs using a label-free electrocatalytic assay. Attomole levels of DNA were detected using the NEEs, validating the promise of nanoarchitectures for ultrasensitive biosensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.