Magnetic field (MF) can have different effects on plant metabolism depending on its application style, intensity, and environmental conditions. This study reports the effects of different intensities of static MF (4 or 7 mT) on seed germination and seedling growth of bean or wheat seeds in different media having 0, 2, 6, and 10 atmosphere (atm) osmotic pressure prepared with sucrose or salt. The germination percentages of the treated seeds were compared with untreated seeds germinated in different osmotic pressure during 7 days of incubation. The application of both MFs promoted the germination ratios of bean and wheat seeds, regardless of increasing osmotic pressure of sucrose or salt. Growth data measured on the 7th day showed that the treated plants grew faster than control. After 7 days of incubation, the mean length of treated seedlings was statistically higher than control plants in all the media. The greatest germination and growth rates in both plants were from the test groups exposed to 7 mT MF. Strikingly, effects of static MF on germination and growth increased positively with increasing osmotic pressure or salt stress compared to their respective controls. On the other hand, MF application caused an increase in dry biomass accumulation of root and shoots of both seedlings; however, this effect was found statistically important in all the conditions for wheat but not for bean, in general.
In the present study, it was aimed to investigate the influence of exogenous mammalian sex hormones (MSH) (progesterone, b-estradiol and androsterone) on the morphological (root and shoot growth) and biochemical parameters (protein and sugar content, antioxidant enzyme activities, and lipid peroxidation and H 2 O 2 levels) of chickpea (Cicer arietinum L.) plants growing under control conditions. The solutions of hormones prepared at different concentrations (10 -4 , 10 -6 , 10 -9 , 10 -12 and 10 -15 M) were sprayed once on the leaves of 7-day plants. The plants were harvested on 18 days after the hormone treatment. Although all of the hormones at the tested concentrations significantly increased plant growth, soluble protein and sugar contents, and antioxidant enzyme activities [superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT)], they decreased H 2 O 2 content and lipid peroxidation level when compared with control plants. The activities of SOD, POX and CAT reached to the highest levels at 10 -6 M for progesterone, and 10 -9 M for b-estradiol and androsterone, which maximum growth, protein and sugar contents were determined. The same concentrations also resulted in the lowest levels for H 2 O 2 content and lipid peroxidation. It can be interpreted that the MSH improve plant growth and development by affecting some biochemical parameters including antioxidative system.
a b s t r a c tImpacts of electric and magnetic fields (EFs and MFs) on a biological organism vary depending on their application style, time, and intensities. High intensity MF and EF have destructive effects on plants. However, at low intensities, these phenomena are of special interest because of the complexity of plant responses. This study reports the effects of continuous, low-intensity static MF (7 mT) and EF (20 kV/m) on growth and antioxidant status of shallot (Allium ascalonicum L.) leaves, and evaluates whether shifts in antioxidant status of apoplastic and symplastic area help plants to adapt a new environment. Growth was induced by MF but EF applied emerged as a stress factor. Despite a lack of visible symptoms of injury, lipid peroxidation and H 2 O 2 levels increased in EF applied leaves. Certain symplastic antioxidant enzyme activities and non-enzymatic antioxidant levels increased in response to MF and EF applications. Antioxidant enzymes in the leaf apoplast, by contrast, were found to show different regulation responses to EF and MF. Our results suggest that apoplastic constituents may work as potentially important redox regulators sensing and signaling environmental changes. Static continuous MF and EF at low intensities have distinct impacts on growth and the antioxidant system in plant leaves, and weak MF is involved in antioxidant-mediated reactions in the apoplast, resulting in overcoming a possible redox imbalance.
Effects of progesterone and β-estradiol on morphologic (germination velocity, root and shoot length) and biochemical (activities of α-amylase, superoxide dismutase, peroxidase and catalase, H2O2 content, lipid peroxidation) parameters during germination and post-germination stages of chickpea seeds were studied. The seeds germinated at various hormone concentrations (10 - 4, 10 - 6, 10 - 9, 10 - 12, 10 - 15 M) were harvested at the end of the 1st, 3rd, and 5th day. With comparison to the control, these hormones caused an increment in the number of germinating seeds at the end of days 1 and 3 by accelerating the seed germination. Root and shoot lengths were augmented by both hormones at all hormone concentrations tested. The highest elongation was recorded in 10 - 6 M progesterone and 10 - 9 - 10 - 12 M β-estradiol. Similarly, activities of α-amylase and superoxide dismutase were increased by all concentrations of both hormones, and maximum increases were obtained with 10 - 6 M progesterone and 10- 9-10- 12 M β-estradiol. In the case of superoxide dismutase activity, not only the H2O2 content but also the peroxidase and catalase activities increased. Lipid peroxidation decreased depending on an increase in the antioxidant enzyme activities. In the present study, it was demonstrated that progesterone and β-estradiol even at low concentrations increase the germination velocity and resistance to stress conditions by changing the activities of some biochemical pathways.
The present study was undertaken to reveal the changes in inorganic constituents of plants exposed to mammalian sex hormones (MSH). Chickpea leaves were sprayed with 10(-4), 10(-6), 10(-9), 10(-12), and 10(-15) M concentrations of progesterone, β-estradiol, and androsterone at 7th day after sowing. The plants were harvested at the end of 18 days after treatment of MSH solutions and the inorganic components determined using a wavelength-dispersive X-ray fluorescence spectroscopy technique. At all of the concentrations tested, MSH significantly increased the contents of K, S, Na, Ca, Mg, Zn, Fe, P, Cu, and Ni. Interestingly, only Mn and Cl contents decreased. The maximum changes in the inorganic composition were recorded at 10(-6) M for plants treated with progesterone and 10(-9) M for plants treated with β-estradiol and androsterone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.