The Triton X-114-based solubilization and temperature-dependent phase separation of proteins is used for subcellular fractionation where, aqueous, detergent, and pellet fractions represents cytoplasmic, outer membrane (OM), and inner membrane proteins, respectively. Mass spectrometry-based proteomic analysis of Triton X-114 fractions of proteomic analysis of Leptospira interrogans identified 2957 unique proteins distributed across the fractions. The results are compared with bioinformatics predictions on their subcellular localization and pathogenic nature. Analysis of the distribution of proteins across the Triton X-114 fractions with the predicted characteristics is performed based on "number" of unique type of proteins, and "quantity" which represents the amount of unique protein. The highest number of predicted outer membrane proteins (OMPs) and pathogenic proteins are found in aqueous and pellet fractions, whereas detergent fraction representing the OM has the highest quantity of OMPs and pathogenic proteins though lower in number than the aqueous and pellet fractions. This leaves the possibility of an upsurge in pathogenic proteins and OMPs on the OM under pathogenic conditions suggesting their potential use to combat leptospirosis. Further, the Triton X-114 subcellular fractions are more correlated to enrichment of pathogenic proteins predicted by MP3 software than predicted localization.
Re-emergence of ZIKV has caused infections in more than 1.5 million people. The molecular mechanism and pathogenesis of ZIKV is not well explored due to unavailability of adequate model and lack of publically accessible resources to provide information of ZIKV-Human protein interactome map till today. This study made an attempt to curate the ZIKV-Human interaction proteins from published literatures and RNA-Seq data. 11 direct interaction, 12 associated genes are retrieved from literatures and 3742 Differentially Expressed Genes (DEGs) are obtained from RNA-Seq analysis. The genes have been analyzed to construct the ZIKV-Human Interactome Map. The importance of the study has been illustrated by the enrichment analysis and observed that direct interaction and associated genes are enriched in viral entry into host cell. Also, ZIKV infection modulates 32% signal and 27% immune system pathways. The integrated database, ZikaBase has been developed to help the virology research community and accessible at https://test5.bicpu.edu.in.
Zika virus (ZIKV), a single-strand RNA flavivirus, is transmitted primarily through Aedes aegypti. The recent outbreaks in America and unexpected association between ZIKV infection and birth defects have triggered the global attention. This vouches to understand the molecular mechanisms of ZIKV infection to develop effective drug therapy. A systems-level understanding of biological process affected by ZIKV infection in fetal brain sample led us to identify the candidate genes for pharmaceutical intervention and potential biomarkers for diagnosis. To identify the key genes, transcriptomics data (RNA-Seq) with GSE93385 of ZIKV (Strain: MR766) infected human fetal neural stem cell are analyzed. In total, 1,084 differentially expressed genes (DEGs) are identified, that is, 471 upregulated and 613 downregulated genes. Further analysis such as the gene ontology term suggested that the downregulated genes are mostly enriched in defense response to virus, receptor binding, laminin binding, extracellular matrix, endoplasmic reticulum, and for upregulated DEGs: translation initiation, RNA binding, cytosol, and nucleosome are enriched. And through pathway analysis, systemic lupus erythematosus (SLE) is found to be the most enriched pathway. Protein-protein interaction (PPI) network is constructed to find the hub genes using STRING database. The seven key genes namely cyclin-dependent kinase 1 (CDK1), cyclin B1 (CCNB1), histone cluster 1 H2B family member K, (HIST1H2BK) histone cluster 1 H2B family member O (HIST1H2BO), and histone cluster 1 H2B family member B (HIST1H2BB), polo-like kinase 1 (PLK1), and cell division cycle 20 (CDC20) with highest degree are found to be hub genes using Centiscape, a Cytoscape plugin. The modules of PPI network using Molecular Complex Detection plugin are found significant in structural constituent of ribosome, defense response to virus, nucleosome, SLE, extracellular region, and regulation of gene silencing. Thus, identified key hub genes and pathways shed light on molecular mechanism that may contribute to the discovery of novel therapeutic targets and development of new strategies for the intervention of ZIKV disease.
Proteomes of pathogenic Leptospira interrogans and L. borgpetersenii and the saprophytic L. biflexa were filtered through computational tools to identify Outer Membrane Proteins (OMPs) that satisfy the required biophysical parameters for their presence on the outer membrane. A total of 133, 130, and 144 OMPs were identified in L. interrogans, L. borgpetersenii, and L. biflexa, respectively, which forms approximately 4% of proteomes. A holistic analysis of transporting and pathogenic characteristics of OMPs together with Clusters of Orthologous Groups (COGs) among the OMPs and their distribution across 3 species was made and put forward a set of 21 candidate OMPs specific to pathogenic leptospires. It is also found that proteins homologous to the candidate OMPs were also present in other pathogenic species of leptospires. Six OMPs from L. interrogans and 2 from L. borgpetersenii observed to have similar COGs while those were not found in any intermediate or saprophytic forms. These OMPs appears to have role in infection and pathogenesis and useful for anti-leptospiral strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.