Highlights Poly (ε) caprolactone-Laponite-Strontium ranelate composite scaffold (PLS3) scaffolds supports proliferation of Human Bone marrow derived stem cells (hMSC) In vitro studies shows PLS3 scaffold upregulates hMSC osteogenic gene expression and mineralization In vivo implantation of hMSC seeded PLS3 scaffold promotes ectopic vascularized bone formation in immunocompromised mice model ABSTRACT Drug functionalized scaffolds are currently being employed to improve local delivery of osteoprotective drugs with the aim of reducing their loading dose as well as unwanted systemic complications. In this study we tested a poly-(ε) caprolactone (PCL)-laponite-strontium ranelate (SRA) composite scaffold (PLS3) for its abilities to support growth and osteogenic differentiation of human marrow derived stromal stem cells (hMSC). The in vitro experiments showed the PLS3 scaffold supported cell growth and osteogenic differentiation. The in vivo implantation of hMSC seeded PLS3 scaffold in immunocompromised mice revealed vascularized ectopic bone formation. PLS3 scaffolds can be useful in bone regenerative applications in the fields of orthopedics and dentistry.
There has been a growing demand for bone grafts for correction of bone defects in complicated fractures or tumours in the craniofacial region. Soft flexible membrane like material that could be inserted into defect by less invasive approaches; promote osteoconductivity and act as a barrier to soft tissue in growth while promoting bone formation is an attractive option for this region. Electrospinning has recently emerged as one of the most promising techniques for fabrication of extracellular matrix such as nano-fibrous scaffolds that can serve as a template for bone formation. To overcome the limitation of cell penetration of electrospun scaffolds and improve on its osteoconductive nature, in this study, we fabricated a novel electrospun composite scaffold of polyvinyl alcohol (PVA)-poly (ε) caprolactone (PCL)-Hydroxyapatite based bioceramic (HAB), namely, PVA-PCL-HAB. The scaffold prepared by dual electrospinning of PVA and PCL with HAB overcomes reduced cell attachment associated with hydrophobic PCL by combination with a hydrophilic PVA and the HAB can contribute to enhance osteoconductivity. We characterized the physicochemical and biocompatibility properties of the new scaffold material. Our results indicate PVA-PCL-HAB scaffolds support attachment and growth of stromal stem cells; [human bone marrow skeletal (mesenchymal) stem cells and dental pulp stem cells]. In addition, the scaffold supported in vitro osteogenic differentiation and in vivo vascularized bone formation. Thus, PVA-PCL-HAB scaffold is a suitable potential material for therapeutic bone regeneration in dentistry and orthopaedics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.