Valeriana jatamansi Jones (Syn. V. wallichii DC.) is an aromatic, medicinal herb used as a tranquilizer and in treating sleep disorders. Rhizome is mainly used to extract essential oil (EO) and valepotriates. High quality and economic yield of rhizomes are available in the third year of growth. Therefore, the cultivation of V. jatamansi is not picking up, and over-exploitation of this plant from wild habitats to meet the increasing demand of the pharmaceutical industry is the cause of threat to the genetic diversity of the species. Further, collections from the wild are heterogeneous, resulting in variable produce. The development of clonal lines can ensure uniform quality and yield of rhizome biomass. An effective clonal propagation method was standardized using different hormonal concentrations of naphthalene acetic acid (NAA) on apical shoot cuttings from the selected clone CSIR-IHBT-VJ-05 for different time durations and raised over various planting media. NAA treatment of 50 ppm concentration for 30 min was found optimum for root induction in apical shoots of V. jatamansi. Variations for EO composition within the clone were non-significant, while samples of the control population were variable. The best quality EO (patchouli alcohol ∼62%) was available during the third year of plant growth. A propagation technique for large-scale quality plant material (QPM) production has been standardized to reduce the stress over natural resources and promote V. jatamansi for use in the aromatic and pharmaceutical industry.
Wild marigold has a growing demand for its essential oil in the flavor and fragrance industries. It can be grown over a broad range of climates, but the changing climatic conditions lead to abiotic stresses, thus restricting its productivity. Abiotic stresses at elevated levels result in the reduction of germination, growth, and essential oil quality of wild marigold leading to heterogeneous and inferior grades of “Tagetes oil.” Drought, salinity, and heavy metal stress at elevated levels have common effects in terms of ROS formation, which are the major cause of growth deterioration in wild marigold. Temperatures above 35°C inhibit seed germination. Irradiance stress reduces the biomass and essential oil yield. Waterlogging adversely affects the survival of wild marigold in high rainfall regions. The application of plant nutrients (fertilizers) modulates the biomass and essential oil yield. Wild marigold employs multiple tolerance mechanisms to cope up with the adverse effects of abiotic stresses such as the increased activity of antioxidants to maintain cellular redox homeostasis, enhanced lipid peroxidation in the cell membrane to maintain cell wall architecture, production of secondary metabolites, and accumulation of osmolytes. In this review, we tried to understand how abiotic stresses affect wild marigold. Understanding the physiological changes and biochemical characteristics of stress tolerance will contribute to the development of stress-tolerant lines of wild marigold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.