EST-SSR markers were developed from Pongamia pinnata transcriptome libraries. We have successfully utilised EST-SSRs to study the genetic diversity of Indian P. pinnata germplasms and transferability study on legume plants. P. pinnata is a non-edible oil, seed-bearing leguminous tree well known for its multipurpose benefits and acts as a potential source for medicine and biodiesel preparation. Moreover, the plant is not grazable by animal and wildly grown in different agro climatic condition of India. Recently, it is much used in reforestation and rehabilitation of marginal and coal mined land in different part of India. Due to increasing demand for cultivation, understanding of the genetic diversity is important parameter for further breeding and cultivation program. In this investigation, an attempt has been undertaken to develop novel EST-SSR markers by analyzing the assembled transcriptome from previously published Illumina libraries of P. pinnata, which is cross transferrable to legume plants. Twenty EST-SSR markers were developed from oil yielding and secondary metabolite biosynthesis genes. To our knowledge, this is the first EST-SSR marker based genetic diversity study on Indian P. pinnata germplasms. The genetic diversity parameter analysis of P. pinnata showed that the Gangetic plain and Eastern India are highly diverse compared to the Central Deccan and Western germplasms. The lowest genetic diversity in the Western region may be due to the pressure of lower precipitation, high-temperature stress and reduced groundwater availability. Nevertheless, the highest genetic diversity of Gangetic plain and Eastern India may be due to the higher groundwater availability, high precipitation, higher temperature fluctuations and growing by the side of glacier-fed river water. Thus, our study shows the evidence of natural selection on the genetic diversity of P. pinnata germplasms of the Indian subcontinent.
There is phylogenetic ambiguity in the genus Lithocarpus and subfamily Quercoideae (Family: Fagaceae). Lithocarpus dealbatus, an ecologically important tree, is the dominant species among the Quercoideae in India. Although several studies have been conducted on the species’ regeneration and ecological and economic significance, limited information is available on its phylo-genomics. To resolve the phylogeny in Quercoideae, we sequenced and assembled the 161,476 bp chloroplast genome of L. dealbatus, which has a large single-copy section of 90,732 bp and a small single-copy region of 18,987 bp, separated by a pair of inverted repeat regions of 25,879 bp. The chloroplast genome contained 133 genes, of which 86 were protein-coding genes, 39 were transfer RNAs, and eight were ribosomal RNAs. Analysis of repeat elements and RNA editing sites revealed interspecific similarities within the Lithocarpus genus. DNA diversity analysis identified five highly diverged coding and noncoding hotspot regions in the four genera, which can be used as polymorphic markers for species/taxon delimitation across the four genera of Quercoideae viz., Lithocarpus, Quercus, Castanea, and Castanopsis. The chloroplast-based phylogenetic analysis among the Quercoideae established a monophyletic origin of Lithocarpus, and a closer evolutionary lineage with a few Quercus species. Besides providing insights into the chloroplast genome architecture of L. dealbatus, the study identified five mutational hotspots having high taxon-delimitation potential across four genera of Quercoideae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.