Abstract:We present the electromagnetic design study of a multi cell, g = 0.9, 650 MHz elliptic superconducting radiofrequency cavity, which can be used for accelerating H -particles in the linear accelerator part of a Spallation Neutron source. The design has been optimized for maximum achievable acceleration gradient by varying the geometry parameters of the cavity, for which a simple and general procedure is evolved that we describe in the paper. For the optimized geometry, we have studied the higher order modes supported by the cavity, and the threshold current for the excitation of the regenerative beam break up instability due to dipole modes has been estimated. Lorentz force detuning studies have also been performed for the optimized design and the calculations are presented to find the optimum location of the stiffener ring to compensate for the Lorentz force detuning.
We present the beam dynamics and electromagnetic studies of a 3 MeV, 325 MHz H− radio frequency quadrupole (RFQ) accelerator for the proposed Indian Spallation Neutron Source project. We have followed a design approach, where the emittance growth and the losses are minimized by keeping the tune depression ratio larger than 0.5. The transverse cross-section of RFQ is designed at a frequency lower than the operating frequency, so that the tuners have their nominal position inside the RFQ cavity. This has resulted in an improvement of the tuning range, and the efficiency of tuners to correct the field errors in the RFQ. The vane-tip modulations have been modelled in CST-MWS code, and its effect on the field flatness and the resonant frequency has been studied. The deterioration in the field flatness due to vane-tip modulations is reduced to an acceptable level with the help of tuners. Details of the error study and the higher order mode study along with mode stabilization technique are also described in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.