The total synthesis of xanthohumol (1) was accomplished in 10% overall yield from phloracetophenone after six steps. Insertion of a prenyl group onto the aryl ring was achieved by a para-Claisen rearrangement after using a Mitsunobu reaction to establish the key prenyl ether precursor. A Claisen-Schmidt condensation was deployed to construct the chalcone scaffold followed by removal of MOM protecting groups under acidic conditions that were optimized to prevent concomitant cyclization to the flavone.
The first total syntheses of racemic glyceollin I and its enantiomers are described. A Wittig approach was utilized as an entry to the appropriately substituted isoflav-3-ene so that an osmium tetroxide mediated asymmetric dihydroxylation could be deployed for stereospecific introduction of the 6a-hydroxy group. While using triphenylphosphine hydrobromide, a novel method was found for gently removing MOM from protected phenolic hydroxyl groups present within sensitive systems.
A 14-step biomimetic synthetic route to glyceollin I (1.5% overall yield) was developed and deployed to produce the natural enantiomeric form in soy, its unnatural stereoisomer, and a racemic mixture. Enantiomeric excess was assessed by asymmetric NMR shift reagents and chiral HPLC. Antiproliferative effects were measured in human breast, ovarian, and prostate cancer cell lines, with all three chiral forms exhibiting growth inhibition (GI) in the low to mid μM range for all cells. The natural enantiomer, and in some cases the racemate, gave significantly greater GI than the unnatural stereoisomer for estrogen receptor positive (ER(+)) versus ER(-) breast/ovarian cell lines as well as for androgen receptor positive (AR(+)) versus AR(-) prostate cancer cells. Surprisingly, differences between ER(+) and ER(-) cell lines were not altered by media estrogen conditions. These results suggest the antiproliferative mechanism of glyceollin I stereoisomers may be more complicated than strictly ER interactions.
Scaled-up procedures and preparation of glyceollin I in multigram quantities are described. The synthesis features construction of a cis-fused ring system in high enantiomeric excess after Sharpless asymmetric dihydroxylation of a key intermediate that is initially produced by an intramolecular Wittig reaction to afford the requisite alkene while simultaneously forming the first ring. The overall yield is 12% after 11 steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.