Eventhough serological correlates of protection for yellow fever are unknown, seronegativity in vaccinated subjects may indicate primary immunisation failure, or waning of immunity to levels below the protection threshold. Immunogenicity of YFV under routine conditions of immunisation services is likely to be lower than in controlled studies. Moreover, infants and toddlers, who comprise the main target group in YF endemic regions, and populations with high HIV infection rates, respond to YFV with lower antibody levels. In those settings one booster dose, preferably sooner than currently recommended, seems to be necessary to ensure longer protection for all vaccinees.
A single vaccination of Yellow Fever vaccines is believed to confer life-long protection. In this study, results of vaccinees who received a single dose of 17DD-YF immunization followed over 10 y challenge this premise. YF-neutralizing antibodies, subsets of memory T and B cells as well as cytokine-producing lymphocytes were evaluated in groups of adults before (NVday0) and after (PVday30-45, PVyear1-4, PVyear5-9, PVyear10-11, PVyear12-13) 17DD-YF primary vaccination. YF-neutralizing antibodies decrease significantly from PVyear1-4 to PVyear12-13 as compared to PVday30-45, and the seropositivity rates (PRNT≥2.9Log10mIU/mL) become critical (lower than 90%) beyond PVyear5-9. YF-specific memory phenotypes (effector T-cells and classical B-cells) significantly increase at PVday30-45 as compared to naïve baseline. Moreover, these phenotypes tend to decrease at PVyear10-11 as compared to PVday30-45. Decreasing levels of TNF-α+ and IFN-γ+ produced by CD4+ and CD8+ T-cells along with increasing levels of IL-10+CD4+T-cells were characteristic of anti-YF response over time. Systems biology profiling represented by hierarchic networks revealed that while the naïve baseline is characterized by independent micro-nets, primary vaccinees displayed an imbricate network with essential role of central and effector CD8+ memory T-cell responses. Any putative limitations of this cross-sectional study will certainly be answered by the ongoing longitudinal population-based investigation. Overall, our data support the current Brazilian national immunization policy guidelines that recommend one booster dose 10 y after primary 17DD-YF vaccination.
In seeking substitutions for the current Chagas disease treatment, which has several relevant side effects, new therapeutic candidates have been extensively investigated. In this context, a balanced interaction between mediators of the host immune response seems to be a key element for therapeutic success, as a proinflammatory microenvironment modulated by interleukin-10 (IL-10) is shown to be relevant to potentiate anti- drug activity. This study aimed to identify the potential immunomodulatory activities of the anti- K777, pyronaridine (PYR), and furazolidone (FUR) compounds in peripheral blood mononuclear cells (PBMC) from noninfected (NI) subjects and chronic Chagas disease (CD) patients. Our results showed low cytotoxicity to PBMC populations, with 50% cytotoxic concentrations (CC) of 71.0 μM (K777), 9.0 μM (PYR), and greater than 20 μM (FUR). In addition, K777 showed no impact on the exposure index (EI) of phytohemagglutinin-stimulated leukocytes (PHA), while PYR and FUR treatments induced increased EI of monocytes and T lymphocytes at late stages of apoptosis in NI subjects. Moreover, K777 induced a more prominent proinflammatory response (tumor necrosis factor alpha-positive [TNF-α] CD8/CD4, gamma interferon-positive [IFN-γ] CD4/CD8 modulated by interleukin-10-positive [IL-10] CD4 T/CD8 T) than did PYR (TNF-α CD8, IL-10 CD8) and FUR (TNF-α CD8, IL-10 CD8). Signature analysis of intracytoplasmic cytokines corroborated the proinflammatory/modulated (K777) and proinflammatory (PYR and FUR) profiles previously found. In conclusion, the lead compound K777 may induce beneficial changes in the immunological profile of patients presenting the chronic phase of Chagas disease and may contribute to a more effective therapy against the disease.
Brucella abortus is a Gram-negative bacterium responsible for a worldwide zoonotic infection—Brucellosis, which has been associated with high morbidity rate in humans and severe economic losses in infected livestock. The natural route of infection is through oral and nasal mucosa but the invasion process through host gut mucosa is yet to be understood. Studies have examined the role of NLRP6 (NOD-like receptor family pyrin domain-containing-6 protein) in gut homeostasis and defense against pathogens. Here, we investigated the impact of gut microbiota and NLRP6 in a murine model of Ba oral infection. Nlrp6-/- and wild-type (WT) mice were infected by oral gavage with Ba and tissues samples were collected at different time points. Our results suggest that Ba oral infection leads to significant alterations in gut microbiota. Moreover, Nlrp6-/- mice were more resistant to infection, with decreased CFU in the liver and reduction in gut permeability when compared to the control group. Fecal microbiota transplantation from WT and Nlrp6-/- into germ-free mice reflected the gut permeability phenotype from the donors. Additionally, depletion of gut microbiota by broad-spectrum-antibiotic treatment prevented Ba replication in WT while favoring bacterial growth in Nlrp6-/-. Finally, we observed higher eosinophils in the gut and leukocytes in the blood of infected Nlrp6-/- compared to WT-infected mice, which might be associated to the Nlrp6-/- resistance phenotype. Altogether, these results indicated that gut microbiota composition is the major factor involved in the initial stages of pathogen host replication and partially also by the resistance phenotype observed in Nlrp6 -/- mice regulating host inflammation against Ba infection.
The ST2 receptor plays an important role in the gut such as permeability regulation, epithelium regeneration, and promoting intestinal immune modulation. Here, we studied the role of ST2 receptor in a murine model of oral infection with Brucella abortus, its influence on gut homeostasis and control of bacterial replication. Balb/c (wild-type, WT) and ST2 deficient mice (ST2−/−) were infected by oral gavage and the results were obtained at 3 and 14 days post infection (dpi). Our results suggest that ST2−/− are more resistant to B. abortus infection, as a lower bacterial colony-forming unit (CFU) was detected in the livers and spleens of knockout mice, when compared to WT. Additionally, we observed an increase in intestinal permeability in WT-infected mice, compared to ST2−/− animals. Breakage of the intestinal epithelial barrier and bacterial dissemination might be associated with the presence of the ST2 receptor; since, in the knockout mice no change in intestinal permeability was observed after infection. Together with enhanced resistance to infection, ST2−/− produced greater levels of IFN-γ and TNF-α in the small intestine, compared to WT mice. Nevertheless, in the systemic model of infection ST2 plays no role in controlling Brucella replication in vivo. Our results suggest that the ST2 receptor is involved in the invasion process of B. abortus by the mucosa in the oral infection model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.