Some properties of the Gumbel-Weibull distribution including the mean deviations and modes are studied. A detailed discussion of regions of unimodality and bimodality is given. The method of maximum likelihood is proposed for estimating the distribution parameters and a simulation is conducted to study the performance of the method. Three tests are given for testing the significance of a distribution parameter. The applications of GumbelWeibull distribution are emphasized. Five data sets are used to illustrate the flexibility of the distribution in fitting unimodal and bimodal data sets.
In this article, additional properties of the Gumbel-Burr XII distribution, denoted by (GBXII(L)), defined in (Osatohanmwen et al., 2017), are studied. We consider some useful characterizations for the GBXII(L) distribution and some of its properties. A simulation study is conducted to assess the performance of the MLEs and the usefulness of the GBXII(L) distribution is illustrated by means of three real data sets. The simulation study suggests that the maximum likelihood method can be used to estimate the distribution parameters, and the three examples show that the GBXII(L) is very flexible in fitting different shapes of data. A log-GBXII(L) regression model is proposed and a survival data is used in an application of the proposed regression model. The log-GBXII(L) regression model is adequate and can be used in comparison to other models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.