In this paper, the performance of a six blades axial type wind turbine has been studied experimentally to estimate the wind power, the electrical generated power and-the modified power-coefficient of the wind-turbine. This study was conducted under different operating conditions assuming steady-state, incompressible and isothermal air flow through the wind-turbine. The range of operating condition was (2 to 5.6 m/s wind speed), (10% to 100% of electrical load that is applied on the terminals of the electrical generator) and (10° to 80° blades angle of the wind-turbine). A good agreement was obtained when comparing the results of the present work with those of a previously published article. The predicted results showed that increasing the wind speed and-the blades angle of the wind-turbine will increase the generated power from the wind-turbine. The maximum-value of the modified power-coefficient was (0.57) at a wind velocity value of (5.6 m/s) and at a blades angle value of (80°). It is found that it's not recommended to operate the wind-turbine at (80°) blades angle associated with a wind speed range that is above (3.8 m/s) due to a high level of wind-turbine vibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.