Distribution channel design is a complex decision involving (a) the strategic choice of the appropriate channel structure, and (b) the tactical selection of the appropriate intermediaries. This paper presents a decision framework and a model to aid management in the tactical selection of the channel intermediaries and the target markets they should serve. The proposed model-based decision approach is illustrated with an actual industrial marketing application. The optimal intermediary network selected by the model is compared to an intuitive network recommended by sales management.marketing, distribution, intermediary selection
Abstract:Electricity from renewable energy (RE) sources gained in significance due to green-friendly governmental initiatives in the form of either direct subsidizes, tax incentives or tradable certificates. Thereby, RE generators are incentivized to maximize energy feed-in or the remuneration from governmental subsidizes, meanwhile neglecting any market interaction. Consequently, wind farms are clustered in windy regions. Along with the governmentally initiated integration of RE generation into power markets, the siting of RE generators will change. In wind power dominated power systems that fully integrate RE generators into power markets, wind farms will compete against each other and try to maximize their market value. Hence, wind speed correlations with other wind farms will become increasingly important when choosing a site in a uniform or zonal pricing system. To quantify the impact of market integration on future wind farm siting, an approach is developed that takes into account the local wind potential of a certain site, wind speed correlations to other sites and their installed capacities. An optimization that minimizes the normalized sum of wind power correlations to all other sites and their respective normalized installed wind power capacity is performed. To achieve a predefined minimum energy output, the average wind yield is considered as an additional constraint. The outcome is an optimal wind farm site in a wind energy dominated system. Running this for a given wind power expansion scenario enables decision makers to foresee the spatial development of wind farm installations. To demonstrate the model's applicability, a case study is performed for Germany. Thereby, wind speed data for four years from the European reanalysis model COSMO-REA6 is used. The results indicate that a full market integration of RE generators will space out more evenly new wind farms. Thereby, wind farms can economically benefit from the non-simultaneity of wind speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.