This paper presents the results of a status quo analysis of biogas production in Germany. It provides detailed information regarding the biogas plant portfolio and distribution, applied technologies, types of substrates und the contribution of biogas to the electricity, heat and transport sector. The evaluations regarding biogas and biomethane are based on data from annually surveys of biogas plant operators, Federal Network Agency regarding electricity generation, German transmission grid operators regarding direct marketing of electricity, and the current plant register regarding flexibility premium.
Abstract:Residues from animal husbandry are one of the major greenhouse gas (GHG) emission sources in agriculture. The production of biogas from agricultural residues can reduce GHG emissions through an improved handling of the material streams such as manure storage. Additionally, biogas can substitute fossil energy carriers in the provision of heat, power, and transport fuels. The aim of this work is to estimate the manure potential for biogas production in Germany under the consideration of the farm size of livestock production. In Germany, cattle and pig farming is of major relevance with more than 130,000 farms throughout the country. To unlock the biogas potential of manure, the low energy density of manure, depending on the dry matter content, needs to be considered, meaning that biogas installations need to be built close to the manure production on the farm site. This not only results in a high number of biogas plants, but also due to the wide range of farm sizes in Germany, a huge number of very small biogas plants. Small biogas installations have higher specific investment costs. Together with the relatively low methane yields from manure, costs for power generation would be very high. Co-substrates with higher methane yield can lower the costs for biogas. Thus, the use of a co-substrate could help to use small manure potentials. Biogas plants with the necessary minimum size of 50 kW el installed power could be established at farms representing 12% of all cattle and 16.5% of all pigs respectively in Germany. Using excrement from pigs, farms representing 16.5% of the total amount of pigs could establish a biogas plant. The use of manure in combination with energy crops can increase the size of biogas plants on a farm site significantly. At cattle farms, the share would increase to 31.1% with 40% co-substrate and to 40.8% with 60% co-substrate. At pig farms, the share would increase to 36% if co-substrates were used.
The expansion of renewable energy technologies, accompanied by an increasingly decentralized supply structure, raises many research questions regarding the structure, dimension, and impacts of the electricity supply network. In this context, information on renewable energy plants, particularly their spatial distribution and key parameters-e.g., installed capacity, total size, and required space-are more and more important for public decision makers and different scientific domains, such as energy system analysis and impact assessment. The dataset described in this paper covers the spatial distribution, installed capacity, and commissioning year of wind turbines, photovoltaic field systems, and bio-and river hydro power plants in Germany. Collected from different online sources and authorities, the data have been thoroughly cross-checked, cleaned, and merged to generate validated and complete datasets. The paper concludes with notes on the practical use of the dataset in an environmental impact monitoring framework and other potential research or policy settings.Dataset: Available as the supplementary file. Spatial distribution of wind turbines, photovoltaic field systems, bioenergy and river hydro power plants in Germany
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.