Methyl red (MR) dye, one of the azo dyes, is mutagenic and its persistence has negative effects on the environment and people’s health. The current work is the first to demonstrate that methyl red dye can be removed effectively and sustainably, utilizing biomass derived from the bark of the Dodonaea viscosa (Hopbush) plant. The Hopbush bark shows effective adsorption of MR, upto 73%, under optimized conditions in an aqueous medium. The experimental conditions were optimized by examining the effect of time, initial dye concentration, pH and ionic strength on the adsorption process in an aqueous medium. Maximum (i.e., 73%) adsorption of MR removal (500 ppm) was observed in highly acidic conditions (pH = 1) at a contact time of 75 min. The pseudo-second-order kinetic model and Freundlich adsorption isotherm appeared to be the most appropriate for characterizing the MR’s adsorption onto the bark of the D. viscosa plant. Furthermore, it was shown that bark powder outperformed animal charcoal, silica gel, and powdered flowers, as well as the leaves of the same species, in terms of adsorption capacity. Thus, a natural adsorbent that is inexpensive and readily available—the bark of the D. viscosa plant—can be used to effectively remove harmful dyes from contaminated water and protect water resources from harmful pollutants.
Oxidation of the iodide ion is an important facet of the solar cells such as perovskite solar cells and dye-sensitized solar cells. The rate of reaction undoubtedly depends upon several factors. Such parameters include reaction media, electrolyte, and the nature of solvents, and electrolyte. If these factors are optimized then the rate of the reaction can be controlled and could be used to get the maximum benefit out of it such as economically and industrially cost-effective uses of the reaction and globally environmentally benign. We studied the kinetics of the oxidation of the iodide ion in the binary solvent system that consisted of 10% (v/v) tertiary butyl alcohol and water. The transition metal complex such as dicyanobis(phenanthroline)iron(III) oxidizes the iodide ion spontaneously without any external triggering with a fast rate at 293 ± 1 K. The reaction was probed under the pseudo-first-order condition with an excess concentration of the iodide ion over dicyanobis(phenanthroline)iron(III) at 0.06 M ionic strength. The reaction was observed independent of the concentration of dicyanobis(phenanthroline)iron(III), that is, the zero order and third order with respect to the iodide ion in the selected solvent system. An overall third-order was observed for the redox reaction. The value of the multiplication product of the molar absorptivity (ɛ), path length of the cuvette (b), and overall rate constant (k) was deduced to be 1.59 × 10 6 M −3 s −1. The observed zero-order rate constant of the reaction was increased by the fractional (1.5) power of the concentration of protons in the excess concentration of acid 1 mM to 0.1 M. The multiplication product of ɛ⋅b to the fractional order rate constant (k′) was found 0.773 M −1.5 s −1 that confirms protonation of triiodide in acidic-10% (v/v) tertiary butyl alcohol-water. The effect of ionic strength showed a similar impact in different compositions of solvents such as 5, 10, and 20% (v/v) tertiary butyl alcoholwater. The observed zero-order rate constant was decreased upon increasing the ionic strength in each medium consisting of the binary solvent system.
Partially biodegradable polymer nanocomposites Poly(3-Hydroxybutyrate) (PHB)/MultiwalledCarbon Nanotubes (MWCNTs)/Poly(Methyl Methacrylate) (PMMA)and non-biodegradable nanocomposites (MWCNTs/PMMA) were synthesized, and their thermal, electrical, and ammonia-sensing properties were compared. MWCNTs were chemically modified to ensure effective dispersion in the polymeric matrix. Pristine MWCNTs (p-MWCNTs) were functionalized with –COOH (a-MWCNTs) and amine groups (f-MWCNTs). Then, PHB grafted multiwalled carbon nanotubes (g-MWNTs) were prepared by a ‘grafting to’ technique. The p-MWCNTs, a-MWCNTs, f-MWCNTs, and g-MWCNTs were incorporated into the PMMA matrix and PMMA/PHB blend system by solution mixing. The PHB/f-MWCNTs/PMMA blend system showed good thermal properties among all synthesized nanocomposites. Results from TGA and dTGA analysis for PHB/f-MWCNTs/PMMA showed delay in T5 (about 127°C), T50 (up to 126°C), and Tmax (up to 65°C) as compared to neat PMMA. Higher values of frequency capacitance were observed in nanocomposites containing f-MWCNTs and g-MWCNTs as compared to nanocomposites containing p-MWCNTs and a-MWCNTs. This may be attributed to their excellent interaction and good dispersion in the polymeric blend. Analysis of ammonia gas-sensing data showed that PHB/g-MWCNTs/PMMA nanocomposites exhibited good sensitivity (≈100%) and excellent repeatability with a constant response. The calculated limit of detection (LOD) is 0.129 ppm for PHB/g-MWCNTs/PMMA, while that of all other nanocomposites is above 40 ppm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.