Being able to build a map of the environment and to simultaneously localize within this map is an essential skill for mobile robots navigating in unknown environments in absence of external referencing systems such as GPS. This so-called simultaneous localization and mapping (SLAM) problem has been one of the most popular research topics in mobile robotics for the last two decades and efficient approaches for solving this task have been proposed. One intuitive way of formulating SLAM is to use a graph whose nodes correspond to the poses of the robot at different points in time and whose edges represent constraints between the poses. The latter are obtained from observations of the environment or from movement actions carried out by the robot. Once such a graph is constructed, the map can be computed by finding the spatial configuration of the nodes that is mostly consistent with the measurements modeled by the edges. In this paper, we provide an introductory description to the graph-based SLAM problem. Furthermore, we discuss a state-of-the-art solution that is based on least-squares error minimization and exploits the structure of the SLAM problems during optimization. The goal of this tutorial is to enable the reader to implement the proposed methods from scratch.
In this report, the use of 13C direct detection has been pursued in 2D experiments (13C-13C COSY, 13C-13C COCAMQ, 13C-13C NOESY) to detect broad lines in nuclear magnetic resonance spectra of paramagnetic metalloproteins. The sample is a monomeric oxidized copper, zinc superoxide dismutase. Thanks to direct detection probeheads, cryogenic technology, and implementation of 13C band-selective homodecoupling, many broadened signals were detected. Proton signals for the same residues escaped detection in 1H and 1H-15N HSQC experiments because of the broadening. Only the 13C signals which experience large contact coupling escaped detection, i.e., the 13C nuclei of the metal coordinated histidines. Otherwise, nuclei as close to copper(II) as 4 A can be detected. Paramagnetic-based restraints can in principle be used for solution structure determination of paramagnetic metalloproteins and in copper(II) proteins in particular. The present study is significant also for the study of large diamagnetic proteins for which proton relaxation makes proton-based spectroscopy not adequate.
In this paper, we address the problem of creating an objective benchmark for evaluating SLAM approaches. We propose a framework for analyzing the results of a SLAM approach based on a metric for measuring the error of the corrected trajectory. This metric uses only relative relations between poses and does not rely on a global reference frame. This overcomes serious shortcomings of approaches using a global reference frame to compute the error. Our method furthermore allows us to compare SLAM approaches that use different estimation techniques or different sensor modalities since all computations are made based on the corrected trajectory of the robot.We provide sets of relative relations needed to compute our metric for an extensive set of datasets frequently used in the robotics community. The relations have been obtained by manually matching laser-range observations to avoid the errors caused by matching algorithms. Our benchmark framework allows the user to easily analyze and objectively compare different SLAM approaches.
Abstract-Pose graphs have become a popular representation for solving the simultaneous localization and mapping (SLAM) problem. A pose graph is a set of robot poses connected by nonlinear constraints obtained from observations of features common to nearby poses. Optimizing large pose graphs has been a bottleneck for mobile robots, since the computation time of direct nonlinear optimization can grow cubically with the size of the graph. In this paper, we propose an efficient method for constructing and solving the linear subproblem, which is the bottleneck of these direct methods. We compare our method, called Sparse Pose Adjustment (SPA), with competing indirect methods, and show that it outperforms them in terms of convergence speed and accuracy. We demonstrate its effectiveness on a large set of indoor real-world maps, and a very large simulated dataset. Open-source implementations in C++, and the datasets, are publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.