Der Ausgangspunkt ffir die hier dargestellten Untersuchungen war die Frage, ob es lokalkompakte topologische Laguerreebenen gibt, in denen die topologische Dimension des Punktraums gr613er ist als vier. Irn Zusammenhang damit galt es zu kl~iren, ob es in kompakten topologischen projektiven Ebenen einer Dimension gr6Ber als vier Ovalelgeben kann, die in topologischer Hinsicht gutartig sind. In dieser Arbeit (3.5,3.6)werden wir beide Fragen verneinend entscheiden (wobei wir allerdings die betrachteten Ebenen als endlichdimensional voraussetzen); dabei geniigt als topologische Voraussetzung an die Ovale ihre Abgeschlossenheit im Punktraum.Dies zeigt ein weiteres Mal die einschneidende Wirkung topologischer Annahmen, da in jeder unendlichen projektiven Ebene Ovale schlechthin zu finden sind: nach einem Verfahren von Mazurkiewicz [29] kann man zum Beispiel eine 2-Kurve konstruieren und diese dann um einen Punkt vermindern, um ein Oval zu erhalten; siehe auch [2], [15].In projektiven Riiumen liegen ~ihnliche Verh~iltnisse vor: Aus unseren Aussagen fiber Ovale k6nnen wir folgern, dab in den projektiven R/iumen h6herer Dimension ( >1 3) fiber den komplexen Zahlen oder den Quaternionen keine abgeschlossenen Ovoide existieren (3.4). Weiter ergibt sich, dab der Punktraum einer endlichdimensionalen lokalkompakten zusammenh~ingen-den M6biusebene nut zweidimensional sein kann (3.2); unter der zus~itzlichen Voraussetzung, dab die Kreise lokal euklidisch sind, ist dies schon lfmger bekannt [18].Grundlage ffir diese Reihe von negativen Resultaten sind verschiedene positive Ergebnisse fiber abgeschlossene Ovale in endlichdimensionalen kompakten zusammenh~ingenden projektiven Ebenen: Die Abgeschlossenheit eines Ovals O impliziert, dab es ein topologisches Oval ist in dem Sinne, dab die Menge der Schnittpunkte einer Geraden L mit O stetig von L abhgngt, auch falls L sich gegen eine Tangente bewegt (2.
PLANESWe conclude a series of papers on 4-dimensional stable planes admitting a non-solvable Lie group A of automorphisms. Here we consider the case where A contains a subgroup qb ~ Spin 3. For dim A >~ 6, the possible planes are completely determined (Theorem 5). Apart from classical examples, we get a single new plane, which is analogous to a 2-dimensional plane constructed by Strambach [21]. For dim A = 5, we can determine the action of the group and roughly describe the possible planes. However, there remains a seemingly difficult problem of deciding which planes of this possibly very large class actually exist, or at least to give some examples.Stable planes are a generalization of topological projective planes designed to include geometries similar to hyperbolic planes. There are also examples which are not obtained as subplanes of projective planes, such as Strambach's plane mentioned above and its 4-dimensional analogue; cf. also [5, § 5]. A stable plane ~ = (M,50) consists of two things. One, a point space M, throughout assumed to be locally compact and Hausdorff and of finite covering dimension d > 0. Two, a system 50 of subsets of M, called lines. Different points x,y~M are joined (belong to) a unique line L = x v y. The operation v and its dual/x (intersection of different lines) are continuous with respect to a suitable topology on 5 °, and the domain of definition of ^ is open (stability of intersection). If ^ exists everywhere, then we get a topological projective plane. The following facts can be found in [3]: The smallest possible values old are 2 and 4 (cf. also [10]), and then the pencil 50x of all lines through x~M is homeomorphic to a sphere of dimension d/2. Each line is closed in M and homeomorphic to an open subset of 50~. The automorphism group F of g is a locally compact topological transformation group of M and of 50. It is a Lie group if d = 2 or if d = 4 and dim F ~> 5[4].This group is the main tool for the investigation of planes; in particular, it serves to single out classes of planes which can be completely understood. In most cases, one starts from a condition of the kind 'dim F >~f' and hopes for a complete classification if f is somewhere in the vicinity of 2d, which is about half the maximal value for projective planes. For stable planes with lines homeomorphic to ~2 this works with f= 10 [3], and in fact, f=9 (unpublished).The present paper concludes a series whose results corflbine to show that Geometriae Dedicata 21 (1986), 1-12.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.