The activated anionic ring opening polymerization of ε-caprolactam to polyamide 6 is highly sensitive to external influences such as water. Based on an initial theory, preliminary reaction kinetic tests are carried out with the aim of compensating the influence of the water by increasing the activator and catalyst concentration. Different formulations of activator and catalyst were studied to understand the influence of water on the concentration of activator and catalyst. It was found that the compensation of added water with activator and catalyst restores the original reaction time. The test plates produced are examined with regard to their mechanical characteristics and the polymer properties. The results of the mechanical characterization show no significant impairment after compensation of the added water. The physical properties of the matrix show degradation with repeated compensation. However, the residual ε-caprolactam content remains below the critical value of 1% for three of the four investigated formulations.
The reaction kinetics of anionic polymerization for the production of anionic polyamide 6 (aPA6) are widely understood. It is also known that this reaction is very sensitive to external influences such as water. This paper analyzes and quantifies the influence of water on the reaction of ε-caprolactam to anionic polyamide 6. A kinetic model is developed in which the reactive molecules of the activator and catalyst are defined as variables and the concentrations of activator and catalyst as well as water content are considered. A model for the calculation of the reaction kinetics is established and validated with experimental data. The developed model can be used to predict the influence and compensation of water by addition of surplus activator and catalyst during the polymerization of ε-caprolactam.
The use of fiber reinforced plastics (FRPs) has significant potential to reduce the weight of components. As regards the sustainability of these components, thermoplastic matrices offer more potential for recycling than thermoset ones. A possible manufacturing process for the production of thermoplastic FRPs is thermoplastic resin transfer molding (T-RTM). In this very moisture-sensitive process, ε-caprolactam in addition to an activator and catalyst polymerizes anionically to polyamide 6 (aPA6). The anionic polymerization of aPA6 is slowed down or even completely blocked by the presence of water. This study analyses the sorption behavior of the matrix, fiber, binder and core materials for the production of anionic polyamide 6 composites, which are processed in the thermoplastic RTM process. Water vapor sorption measurements are used to determine the adsorption and desorption behavior of the materials. The maximum moisture loading of the materials provides information about the water adsorption capacity of the material. This knowledge is crucial for correct handling of the materials to achieve a fast process and good properties of the final product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.