We investigate the use of artificial intelligence (AI)-based techniques in learning to play a 2-player, real-time strategy (RTS) game called Hunting-of-the-Plark. The game is challenging to play for both humans and AI-based techniques because players cannot observe each other's moves while playing the game and one player is at a disadvantage due to the asymmetric nature of the game rules. We analyze the performance of different deep reinforcement learning algorithms to train software agents that can play the game. Existing reinforcement learning techniques for RTS games enable players to converge towards an equilibrium outcome of the game but usually do not facilitate further exploration of techniques to exploit and defeat the opponent. To address this shortcoming, we investigate techniques including self-play and strategy diversity that can be used by players to improve their performance beyond the equilibrium outcome. We observe that when players use self-play, their number of wins begins to cycle around an equilibrium value as each player quickly learns to outwit and defeat its opponent and vice-versa. Finally, we show that strategy diversity could be used as an effective means to alleviate the performance of the disadvantaged player caused by the asymmetric nature of the game.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.