Copies of full items can be used for personal research or study, educational, or not-forprofit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
A note on versions:The version presented here is a working paper or pre-print that may be later published elsewhere. If a published version is known of, the above WRAP url will contain details on finding it.
AbstractA Micro Gas Turbine (MGT) can be considered as an alternative to the internal combustion engine as a range extender for electric vehicles. The MGT produces less raw exhaust gaseous emissions such as HC and CO in aerospace and static applications compared to the internal combustion engine. In addition, the MGT weight is less than an equivalent internal combustion engine and potentially can reduce the level of CO 2 further in a vehicle application. However, the use of the MGT in an automotive domain has some unique technical and commercial requirements that will require new validation approaches. An air filtration system is known to be one of the important elements to characterise the performance and the emissions of the MGT. In the past, most of the efforts on MGT were focused on the vehicle development and packaging studies, where the technical requirements of the test standards for the air filtration system were not considered. Furthermore, the validation techniques of the air filtration system for automotive applications have different requirements to those of a large scale turbine for aerospace use. A test method has been developed to investigate the effect of the automotive air filtration system on the MGT's characteristics in terms of the electrical power output and potentially the gaseous emissions. The outcomes of the research have provided good understanding of the MGT validation process in the automotive applications. It addresses the potential challenges that may hamper the MGT range extender for hybrid electric vehicle development processes.
This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.