Exosomes are the nanoscopic lipid bi-layered extracellular vesicles with the potential to be utilized as targeted therapeutics. In our investigation, we compared three major exosome isolation techniques that were Total Exosome Isolation reagent (TEI), Protein organic solvent precipitation (PROSPR) and differential ultracentrifugation (UC) based on the biophysical and physicochemical characteristics of exosomes isolated from COLO 205 and MCF-7 cancer cell's conditioned media with an aim to select a suitable method for translational studies. 3D image analysis and particle size distribution of exosomes from their HRTEM images depicted the morphological differences. Molecular and analytical characterization of exosomes using western blotting, Raman and ATR-FTIR spectroscopy and the multivariate analysis on the spectral data obtained, assessed for better molecular specifications and purity of particle. TEI method isolated exosomes with higher exosomal yield, purity, and recovery directly translatable into drug delivery and targeted therapeutics whereas ultracentrifuge had good recovery of particle morphology but showed particle aggregation and yielded exosomes with smaller mean size. PROSPR technique isolated a mixture of EVs, showed lower protein recovery in PAGE and western blotting but higher spectroscopic protein to lipid ratio and distinguishable EV population in multivariate analysis compared to exosomes isolated by TEI and UC. This comparative study should help in choosing a specific exosome isolation technique required for the objective of downstream applications.
To understand molecular cytotoxicity of chromium(III) and how it affects the stability of biological membranes, studies on the interaction of chromium(III) complexes aquapentaminechromium complex (complex I) and trans- [Cr(5-methoxysalcyclohex) (H(2)O) (2)] ClO(4) (complex II) with model biomembranes have been carried out. Langmuir films of dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidic acid (DPPA), dioctadecyldimethylammoniumbromide (DOMA) at air/water interface interacting with the chromium(III) complexes have been characterized using the surface pressure-molecular area (π-A) isotherms. Initial surface pressures changes for the two complexes show that the chromium(III) complexes inserted in the Langmuir films and complex I interacted strongly compared to complex II. Supported bilayers (SB) of the lipids on solid substrates formed by hydrating their Langmuir-Blodgett films (LB films) have been characterized using linear dichroic spectra, low angle X-ray diffraction and steady state fluorescence anisotropy. Depending on the geometry of the ligands and concentration, the complexes either insert in the alkyl or in the head group region of the SB and sometimes in both regions. The Supported lipid bilayers are well-layered and at low concentration, the metal complexes are incorporated near the head group region. Order and increase in lamellar spacing show stronger interaction of complex I with the lipids compared with complex II. This study provides some insights into the mechanism of chromium(III) toxicity and uptake of chromium(III) by the cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.