DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
We investigated metal-organic vapor phase epitaxy grown (InGa)(AsSb)/GaAs/GaP Stranski–Krastanov quantum dots (QDs) with potential applications in QD-Flash memories by cross-sectional scanning tunneling microscopy (X-STM) and atom probe tomography (APT). The combination of X-STM and APT is a very powerful approach to study semiconductor heterostructures with atomic resolution, which provides detailed structural and compositional information on the system. The rather small QDs are found to be of truncated pyramid shape with a very small top facet and occur in our sample with a very high density of ∼4 × 1011 cm−2. APT experiments revealed that the QDs are GaAs rich with smaller amounts of In and Sb. Finite element (FE) simulations are performed using structural data from X-STM to calculate the lattice constant and the outward relaxation of the cleaved surface. The composition of the QDs is estimated by combining the results from X-STM and the FE simulations, yielding ∼InxGa1 − xAs1 − ySby, where x = 0.25–0.30 and y = 0.10–0.15. Noticeably, the reported composition is in good agreement with the experimental results obtained by APT, previous optical, electrical, and theoretical analysis carried out on this material system. This confirms that the InGaSb and GaAs layers involved in the QD formation have strongly intermixed. A detailed analysis of the QD capping layer shows the segregation of Sb and In from the QD layer, where both APT and X-STM show that the Sb mainly resides outside the QDs proving that Sb has mainly acted as a surfactant during the dot formation. Our structural and compositional analysis provides a valuable insight into this novel QD system and a path for further growth optimization to improve the storage time of the QD-Flash memory devices.
The fundamental understanding of quantum dot (QD) growth mechanism is essential to improve QD based optoelectronic devices. The size, shape, composition, and density of the QDs strongly influence the optoelectronic properties of the QDs. In this article, we present a detailed review on atomic-scale characterization of droplet epitaxy quantum dots by cross-sectional scanning tunneling microscopy (X-STM) and atom probe tomography (APT). We will discuss both strain-free GaAs/AlGaAs QDs and strained InAs/InP QDs grown by droplet epitaxy. The effects of various growth conditions on morphology and composition are presented. The efficiency of methods such as flushing technique is shown by comparing with conventional droplet epitaxy QDs to further gain control over QD height. A detailed characterization of etch pits in both QD systems is provided by X-STM and APT. This review presents an overview of detailed structural and compositional analysis that have assisted in improving the fabrication of QD based optoelectronic devices grown by droplet epitaxy.
We investigated metal-organic vapor phase epitaxy grown droplet epitaxy (DE) and Stranski-Krastanov (SK) InAs/InP quantum dots (QDs) by cross-sectional scanning tunneling microscopy (X-STM). We present an atomic-scale comparison of structural characteristics of QDs grown by both growth methods proving that the DE yields uniform and shape symmetric QDs. Both DE and SKQDs are found to be truncated pyramid-shaped with a large and sharp top facet. We report the formation of localized etch pits for the first time in InAs/InP DEQDs with atomic resolution. We discuss the droplet etching mechanism in detail to understand the formation of etch pits underneath the DEQDs. A summary of the effect of etch pit size and position on fine structure splitting (FSS) is provided via k .p theory. Finite element (FE) simulations are performed to fit the experimental outward relaxation and lattice constant profiles of the cleaved QDs. The composition of QDs is estimated to be pure InAs obtained by combining both FE simulations and X-STM results. The preferential formation of {136} and {122} side facets was observed for the DEQDs. The formation of a DE wetting layer from As-P surface exchange is compared with the standard SKQDs wetting layer. The detailed structural characterization performed in this work provides valuable feedback for further growth optimization to obtain QDs with even lower FSS for optoelectronic applications and quantum technology.
Sb2Te3 exhibits several technologically relevant properties, such as high thermoelectric efficiency, topological insulator character, and phase change memory behavior. Improved performances are observed and novel effects are predicted for this and other chalcogenide alloys when synthetized in the form of high‐aspect‐ratio nanostructures. The ability to grow chalcogenide nanowires and nanopillars (NPs) with high crystal quality in a controlled fashion, in terms of their size and position, can boost the realization of novel thermoelectric, spintronic, and memory devices. Here, it is shown that highly dense arrays of ultrascaled Sb2Te3 NPs can be grown by metal organic chemical vapor deposition (MOCVD) on patterned substrates. In particular, crystalline Sb2Te3 NPs with a diameter of 20 nm and a height of 200 nm are obtained in Au‐functionalized, anodized aluminum oxide (AAO) templates with a pore density of ≈5 × 1010 cm−2. Also, MOCVD growth of Sb2Te3 can be followed either by mechanical polishing and chemical etching to produce Sb2Te3 NPs arrays with planar surfaces or by chemical dissolution of the AAO templates to obtain freestanding Sb2Te3 NPs forests. The illustrated growth method can be further scaled to smaller pore sizes and employed for other MOCVD‐grown chalcogenide alloys and patterned substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.