The production and inevitable release of engineered nanoparticles requires rapid approaches to screen for their potential effects in environmental organisms, including bacteria. In bacteria, engineered nanoparticle effects can initiate at the cell membrane, for example by structurally damaging membranes or inhibiting energy transduction. Commercially available fluorescence- and absorbance-based assays could allow for rapidly assaying engineered nanoparticle effects on bacterial membranes, but there are limitations, including that: 1) assays are not currently configured to operate as part of a comprehensive high-throughput screening system, since assay conditions vary widely and formats are mostly high-volume and thus low-throughput, and; 2) engineered nanoparticles can interfere with assay reagents or function, yielding false-negative or -positive outcomes. Here, key assays to study reactive oxygen species (total ROS, and superoxide) production, and impacts on bacterial membrane integrity, membrane potential, and electron transport chain activity, are assessed for their potential use as a comprehensive system to test for nanoparticle effects in bacteria. To address (1), assays are adapted for simultaneous use in 96-well microplates under harmonized conditions. To address (2), a general scheme to test for engineered nanoparticle interferences with assay reagents and function is conceived, and used to study assay interferences by three nanoscale metal-oxides: nano-TiO2 , nano-CeO2 , and nano-ZnO. The results show that the selected assays can be used as a suite, and that nanoparticle interferences, when they occur, can be systematically investigated and often accounted for.
Relatively few studies have examined bacterial responses to the reduced gravity conditions that are experienced by bacteria grown in space. In this study, whole genome expression of Escherichia coli K12 under clinorotation (which models some of the conditions found under reduced gravity) was analyzed. We hypothesized that phenotypic differences at cellular and population levels under clinorotation (hereafter referred to as modeled reduced gravity) are directly coupled to changes in gene expression. Further, we hypothesized that these responses may be due to indirect effects of these environmental conditions on nutrient accessibility for bacteria. Overall, 430 genes were identified as significantly different between modeled reduced gravity conditions and controls. Upregulated genes included those involved in the starvation response (csiD, cspD, ygaF, gabDTP, ygiG, fliY, cysK) and redirecting metabolism under starvation (ddpX, acs, actP, gdhA); responses to multiple stresses, such as acid stress (asr, yhiW), osmotic stress (yehZYW), oxidative stress (katE, btuDE); biofilm formation (lldR, lamB, yneA, fadB, ydeY); curli biosynthesis (csgDEF), and lipid biosynthesis (yfbEFG). Our results support the previously proposed hypothesis that under conditions of modeled reduced gravity, zones of nutrient depletion develop around bacteria eliciting responses similar to entrance into stationary phase which is generally characterized by expression of starvation inducible genes and genes associated with multiple stress responses.
A total of 74 morphologically distinct bacterial colonies were selected during isolation of bacteria from different parts of tomato plant (rhizoplane, phylloplane and rhizosphere) as well as nearby bulk soil. The isolates were screened for plant growth promoting (PGP) traits such as production of indole acetic acid, siderophore, chitinase and hydrogen cyanide as well as phosphate solubilization. Seven isolates viz., NR4, NR6, RP3, PP1, RS4, RP6 and NR1 that exhibited multiple PGP traits were identified, based on morphological, biochemical and 16S rRNA gene sequence analysis, as species that belonged to four genera Aeromonas, Pseudomonas, Bacillus and Enterobacter. All the seven isolates were positive for 1-aminocyclopropane-1-carboxylate deaminase. Isolate NR6 was antagonistic to Fusarium solani and Fusarium moniliforme, and both PP1 and RP6 isolates were antagonistic to F. moniliforme. Except RP6, all isolates adhered significantly to glass surface suggestive of biofilm formation. Seed bacterization of tomato, groundnut, sorghum and chickpea with the seven bacterial isolates resulted in varied growth response in laboratory assay on half strength Murashige and Skoog medium. Most of the tomato isolates positively influenced tomato growth. The growth response was either neutral or negative with groundnut, sorghum and chickpea. Overall, the results suggested that bacteria with PGP traits do not positively influence the growth of all plants, and certain PGP bacteria may exhibit host-specificity. Among the isolates that positively influenced growth of tomato (NR1, RP3, PP1, RS4 and RP6) only RS4 was isolated from tomato rhizosphere. Therefore, the best PGP bacteria can also be isolated from zones other than rhizosphere or rhizoplane of a plant.
BackgroundBacterial phenotypes result from responses to environmental conditions under which these organisms grow; reduced gravity has been demonstrated in many studies as an environmental condition that profoundly influences microorganisms. In this study, we focused on low-shear stress, modeled reduced gravity (MRG) conditions and examined, for Escherichia coli and Staphlyococcus aureus, a suite of bacterial responses (including total protein concentrations, biovolume, membrane potential and membrane integrity) in rich and dilute media and at exponential and stationary phases for growth. The parameters selected have not been studied in E. coli and S. aureus under MRG conditions and provide critical information about bacterial viability and potential for population growth.ResultsWith the exception of S. aureus in dilute Luria Bertani (LB) broth, specific growth rates (based on optical density) of the bacteria were not significantly different between normal gravity (NG) and MRG conditions. However, significantly higher bacterial yields were observed for both bacteria under MRG than NG, irrespective of the medium with the exception of E. coli grown in LB. Also, enumeration of cells after staining with 4',6-diamidino-2-phenylindole showed that significantly higher numbers were achieved under MRG conditions during stationary phase for E. coli and S. aureus grown in M9 and dilute LB, respectively. In addition, with the exception of smaller S. aureus volume under MRG conditions at exponential phase in dilute LB, biovolume and protein concentrations per cell did not significantly differ between MRG and NG treatments. Both E. coli and S. aureus had higher average membrane potential and integrity under MRG than NG conditions; however, these responses varied with growth medium and growth phase.ConclusionsOverall, our data provides novel information about E. coli and S. aureus membrane potential and integrity and suggest that bacteria are physiologically more active and a larger percentage are viable under MRG as compared to NG conditions. In addition, these results demonstrate that bacterial physiological responses to MRG conditions vary with growth medium and growth phase demonstrating that nutrient resources are a modulator of response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.