We study the effects of a series of post-deposition ligand treatments on the photoluminescence (PL) of polycrystalline methylammonium lead triiodide perovskite thin films. We show that a variety of Lewis bases can improve the bulk PL quantum efficiency (PLQE) and extend the average PL lifetime, ⟨τ⟩, with large enhancements concentrated at grain boundaries. Notably, we demonstrate thin-film PLQE as high as 35 ± 1% and ⟨τ⟩ as long as 8.82 ± 0.03 μs at solar equivalent carrier densities using tri-n-octylphosphine oxide-treated films. Using glow discharge optical emission spectroscopy and nuclear magnetic resonance spectroscopy, we show that the ligands are incorporated primarily at the film surface and are acting as electron donors. These results indicate it is possible to obtain thin-film PL lifetime and PLQE values that are comparable to those from single crystals by control over surface chemistry.
In suspensions of Nafion beads and of cationic gel beads, NMR spectroscopy showed two water–proton resonances, one representing intimate water layers next to the polymer surface, the other corresponding to water lying beyond. Both resonances show notably shorter spin–lattice relaxation times (T1) and smaller self-diffusion coefficients (D) indicating slower dynamics than bulk water. These findings confirm the existence of highly restricted water layers adsorbed onto hydrophilic surfaces and dynamically stable water beyond the first hydration layers. Thus, aqueous regions on the order of micrometers are dynamically different from bulk water.
Efficient noncentrosymmetric arrangement of nonlinear optical (NLO) chromophores with high first-order hyperpolarizability (beta) for increased electro-optical (EO) efficiency has proven challenging as strong dipolar interactions between the chromophores encourage antiparallel alignment, attenuating the macroscopic EO effect. This work explores a novel approach to simultaneously achieve large beta values while providing an adjustable dipole moment by linking a strong neutral-ground-state (NGS) NLO chromophore with positive beta to a zwitterionic (ZWI) chromophore with negative beta in an antiparallel fashion. It is proposed that the overall beta of such a structure will be the sum of the absolute values of the two types of chromophores while the dipole moment will be the difference. Molecules 1-3 were synthesized to test the feasibility of this approach. Molecular dynamics calculations and NMR data supported that the NGS chromophore component and the ZWI chromophore component self-assemble to an antiparallel conformation in chloroform. Calculations showed that the dipole moment of 1 is close to the difference of the two component chromophores. Hyper-Rayleigh scattering (HRS) studies confirmed that the first hyperpolarizability of 1 is close to the sum of the two component chromophores. These results support the idea that an antiparallel-aligned neutral-ground-state chromophore and a zwitterionic chromophore can simultaneously achieve an increase in beta and a decrease of the dipole moment.
Glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) is ubiquitous biological tripeptide with multiple functions and possible therapeutic uses. The oxidized disulfide form (GSSG) self-assembles into fibrillar aggregates and gels in organic solvents, but not in solvent mixtures with high water content. Here, the disulfide bond has been replaced with a pyrenyl moiety in order to test the ability of GSH to direct noncovalent self-assembly in H2O, when combined with a hydrophobic driving force for aggregation. The resulting GSH-pyrene forms gels in 95% H2O:5% DMSO. The gamma-glutamyl group is critical for gelation, as it is with GSSG organo-gels, inasmuch as neither S-(pyrenyl)-cysteinyl-glycine nor the iodo-acetamido-pyrene precursor gels under any conditions studied. Circular dichroism and fluorescence spectroscopy indicate that the pyrene moieties cluster within the gels. Scanning and transmission electron microscopy reveal fibrous networks with individual strands of approximately 50-100 nm diameter. Saturation transfer difference (STD) NMR studies demonstrate that water interacts strongly with GSH-borne protons in both solution and gel states, but only the gels include water-pyrenyl interactions with significant residence times.
Although most peptide bonds in proteins exist in the trans configuration, when cis peptide bonds do occur, they can have major impact on protein structure and function. The rapid identification of cis peptide bonds is therefore an important task. Peptide bonds containing proline are more likely to adopt the cis configuration because the ring connecting the side chain and backbone in proline flattens the energetic landscape relative to amino acids with free side chains. Examples of cis proline isomers have been identified in both solution and in the gas phase by a variety of structure-probing methods. Mass spectrometry is an attractive potential method for identifying cis proline due to its speed and sensitivity; however, the question remains of whether cis/ trans proline isomers originating in solution are preserved during ionization and manipulation within a mass spectrometer. Herein, we investigate the gas-phase stability of isolated solution-phase cis and trans proline isomers using a synthetic peptide sequence with a Tyr-Pro-Pro motif. A variety of dissociation methods were explored to evaluate their potential to distinguish cis/trans configuration, including collision-induced dissociation, radical-directed dissociation, and photodissociation. Only photodissociation employed in conjunction with extremely gentle electrospray and charge solvation by 18-crown-6 ether was able to distinguish cis/ trans isomers for our model peptide, suggesting that any thermal activation during transfer or while in the gas phase leads to isomer scrambling. Furthermore, the necessity for 18-crown-6 suggests that intramolecular charge solvation taking place during electrospray ionization can override cis/trans isomer homogeneity. Overall, the results suggest that solution-phase cis/trans proline isomers are fragile and easily lost during electrospray, requiring careful selection of instrument parameters and consideration of charge solvation to prevent cis/trans scrambling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.